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ABSTRACT

Acoustic propagation in an atmosphere with a specific form of a temperature
profile has been investigated by analytical means. The temperature profile used is
representative of an actual atmospheric profile and contains three free parameters.
Both lapse and inversion cases have been considered. Although ray solution have
been considered the primary emphasis has been on solutions of the acoustic wave
equation with point source where the sound speed varies with height above the ground
corresponding to the assumed temperature profile. The method used to obtain the
solution of the wave equation is based on Hankel transformation of the wave equation,
approximate solution of the transformed equation for wavelength small compared to the
scale of the temperature (or sound speed) profile, and approximate or numerical
inversion of the Hankel transformed solution. The solution display the characteristics
found in experimental data but extensive comparison between the models and
experimental data has not been carried out.
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1.0 INTRODUCTION

Although the propagation of acoustic signals through the atmosphere has been
studied for many years, and most atmospheric effects are understood in the qualitative
sense, quantitative modeling of most of these effects has become an area of interest
only recently. The dominant effect occurring in atmospheric propagation is the
spreading of acoustic energy associated with a wave propagating in three dimensions
over an ever increasing area, the well known spherical spreading effect, which occurs
in an isothermal, unbounded atmosphere. In addition to this, acoustic waves are
absorbed by the atmosphere, reflected and absorbed at the ground surface, scattered
by turbulence, and refracted by both wind and temperature gradients.

This report summarizes a project to develop models for the propagation of
acoustic signals from a point source above a finite impedance ground surface in the
presence of temperature gradients in the atmosphere. The situation of interest is the
case of sound from a source located within a few meters of the ground propagating to a
receiver located within a few meters of the ground through the temperature gradient
that commonly occurs just above the ground surface. Best{1], Gieger{2], and
Reynolds|[3] all discuss the temperature gradient in this region. Within one to two
meters of the ground the temperature generally goes through a diurnal cycle with a
lapse condition, temperature decreasing with height, occurring in the afternoon and an
inversion condition, temperature increasing with height, at night, see Figure 1.1.
Shortly after sunrise and sunset the atmosphere goes through a nearly isothermal
period when the transition from lapse to inversion or inversion to lapse condition is
under way. This simple picture of the very complex atmospheric dynamics near the
ground can be upset by significant winds which increase the mixing near the ground
surface and tend to lead to a more isothermal situation, or to an overcast which can



e

prevent a strong lapse condition from developing by blocking the insolation or prevent
an inversion from occurring by blocking the radiation from the ground to the night sky.

References 1,2 and 3 all discuss the classic logarithmic temperature profile given
by

r4
T=T°|n(-z—)

0
(1.1)
which is based on empirical results. This result, although fitting the experimental data
well, certainly is not reasonable either for heights very near the ground or very far
above the ground. In addition, logarithmic functions are generally more difficult to deal
with in an analysis then are algebraic functions. For this latter reason the profile used
in this study is

T=T +-2T
= 1+az

(1.2)
This form of the temperature profile is shown in Figure 1.2 along with some
temperature data obtained by Butterworth[4]. The agreement between the data and
the assumed function fitted to this data is excellent. Also as compared to (1.1) the

physical meaning of the parameters in (1.2), T.,, AT, and a, are clear. The assumed

temperature profile asymptotically approaches the temperature T, high above the
ground. Atthe ground the temperature is T, + AT, thus the change in temperature

between the ground and far about the ground is AT. The derivative of temperature



with respect 1o height evaluated at the ground surface is — a AT. Thus 1/a is the scale
over which the temperature change AT occurs. For example at a height z = 1/a

one-half of the total temperature change AT has occurred. The temperature profile of

(1.2) can be used to represent either a lapse or inversion condition. For a lapse
condition the parameter AT is positive and for an inversion it is negative.

The equation governing the wave motion is the simple acoustic wave equation
with a sound speed varying with height and with a point source term,

1 azp 2 q ot
2—2--V p=—=e &(r) &(z-s)
a(z) ot nr

(1.3)
At the ground surface, z = 0, a normal impedance boundary condition

A
p=—f-=
ipw

(1.4)

is assumed. High above the ground, z — =, only outgoing waves are permitted, a
radiation condition. At the source height, z = s, the pressure field is to be continuous,
and to satisfy the conditions implied by (1.3).

Section 2 contains a discussion of the acoustic rays that characterize both the
lapse and inversion cases for the assumed temperature gradient, (1.2). This both
yields a quantitative understanding of the ‘propagation phenomena, and plays an
integral part in understanding the modeling that follows. The model for the lapse
condition is developed in Section 3 and the inversion model is described in Section 4.



Section 5 contains a discussion of the conclusions developed during the project.



2.0 ACOUSTIC RAYS

Acoustic ray tracing is a relatively simple procedure for an axisymmetric case
which yields a great deal of qualitative information about a given propagation situation.
Only a brief discussion is given here. More detail is given in [5]. For an horizontally
stratified atmosphere the acoustic rays may be determined from an acoustic form of
Snell's law

Cos 6(z) _Cos 6(s)
azy =~ a(s)

(2.1)

where the source is located at the height s. Here 6(z) is the angle between a ray and
the horizontal at the height z, see Figure 2.1. Thus the right hand side of (2.1) is a

constant for a ray emitted from the source at an initial angle 6(s). Using (1.2) to obtain

(2.2)
which describes the sound speed as a function of height, the slope of a ray initially

emitted from the source at an angle 6(s) is determined from (2.1) to be given by

(@)
N
+
O

(2.3)



where

A=af1 +as+§.—T-(1 +as)Cosze(s)]

(2.4)
B=[1 +as+%.l-(1 +as) (1 +%I)Cos"e(s)1
(2.5)
C=a(1+as)Cos(s)
(2.6)
and
D=(1+$—T)(1+as)Cosze(s)
2.7)

Equation (2.3) can be integrated to obtain the ray paths. Different results are obtained
in the lapse and inversion cases and these will be considered separately in the next

two sections.

2.1 Lapse Case

In the lapse case the quantity A is positive and integrating (2.3) to obtain the rays



yields four different cases. For rays going upward from the source (using the positive
sign in (2.3))

r = F(z, 6(s)) - F(s, 6(s))

(2.6)

for rays going downward initially from the source (using the negative sign)
r=F(s, 8(s)) - F(z, 6(s))

(2.7)
for rays that were initially going downward but have been reflected upward at the
ground (using the positive sign and (2.7))

r=F(z, 6(s)) + F(s, 6(s)) - 2 F(0, 6(s))

(2.8)
and for rays that initially were going downward and were refracted upward before
reaching the ground (again using the positive sign and (2.7))

r= F(z, 6(s)) + F(s, 6(s))
(2.9)
The function F(z, 6(s)) is given by
1
Fa, e(s))=J(Az+B)(Cz+D) —E ( +¢)
A 2AJAC 1-¢
(2.10)



where

E=AD-BC

=a(1 +as+9.|.l)($1)(1+as)Cosze(s)

(2.11)
and

¢_\[C(Az+B)'
"\ |A](Cz+D)
(2.12)

The absolute value of A in (2.12) is immaterial in the lapse case where A is always
positive but significant in the case of an inversion where A may change sign.

The rays are identified by the parameter 6(s), the initial angle at which the ray
leaves the source. Thus a ray initially propagating downward and identified by a

particular value of 6(s) will either be reflected upward at the ground or refracted upward
at a turning point. In either case the reflected or refiected ray will be identified by the

same value of 8(s) as the initial ray. Figure 2.2 is an example of the rays calculated
from (2.6) to (2.9).

Setting 6(z) = 0 in (2.3) yields an expression for the height at which an initially
downward propagating ray becomes horizontal, the turning point, as



B
=R

(2.13)
Solving this expression for Cos 6(s) yields
| feass ATy
(1+a z, Y(1+as+ T )
Cos 6(s) = =
1 1 AT
(1+as)(1+a Z,+ T )
(2.14)

which identifies the ray having a tuming point at a height z,,. The ray that grazes the
ground and is the boundary between reflected and refracted rays can be found by
setting z,, = 0 in (2.14). The ray that divides the initially upward and downward
propagating rays is identified by 6(s) = 0.

For the ray that grazes the ground, and is identified by the value of 6(s) defined by
(2.14) with z,, = 0, the function F(0, 6(s)) = 0 and thus this ray is defined by either (2.8)
or (2.9). Similarly for 6(s) = O the ray can either be obtained from (2.6) or (2.9) since on

this ray F(s, 0) = 0. At a turning point F(z,,, 6(s)) = 0 when 6(s) is given by (2.14).

The shadow boundary is more difficult to locate. It is bounded by refracted rays
(2.9) and at a fixed height z is the maximum possible value of r for rays with turning
points below that height. Thus the ray tangent to the shadow boundary or caustic at the
height z is identified by solving the equation



or __dF(z,6(s) 9F(s 6(s) _
a6(s)  d6(s) 96(s)

(2.15)

for 6(s) and then using that value in (2.9) to determine the location. The derivative in
(2.15) can be obtained from

AT

1+az)(1- -3 1+az+—

pp LTra)(1)-39) / vazsdl
0

v a(1-y)2 /1+az-72(1+az+$—T-)

142y
+T“ In( 1+¢)
3 1-¢

2[1-9)?

(2.16)
where
1+az
Y= 1+O[Z*.-A_,[Cose(s)
T

(2.17)

Due to the complexity of this expression an analytic solution is not possible and either
a numerical solution of (2.15) must be obtained or the approximate relations given in
[5] must be used.

10



2.2 Inversion Case

As in the lapse case several different types of rays occur in the inversion case.

Integrating (2.3) with AT/T_ negative also yields three different forms for the function

which determines the rays depending upon whether the quantity A given in (2.4) is
positive, negative or zero. The meaning of these three cases is discussed below. For
rays that are initially angled upward (using the positive sign in (2.3))

r=F(z, 6(s)) - F(s, 6(s))

(2.18)
where i = 1, 2, or 3 depending on the initial angle of the ray leaving the source. Rays
with i =1 leave the source a sufficiently large angle upward so they do not have a
turning point and are never refracted downward. The case i =2 corresponds to the
limiting ray that has a turning point at infinite height. Rays described with i = 3 have
turning points at finite height and are alternately refracted downward and reflected
upward at the ground. These are the rays trapped by the inversion.

Rays that initially are angled downward are given by (using the negative sign in
(2.3)

r=Fys, 6(s)) - F,z, 6(s))

- (2.19)
for all three cases before they are reflected upward at the ground. The reflected
waves are given by (using the positive sign)

11




r=F,(z, 6(s)) + F s, 6(s)) - 2 F (0, 6(s))

(2.20)
in all three cases. Note that after reflection the i = 3 rays are refracted downward and
reflected upward from the ground repeatedly. In the case of these i = 3 type rays four
more forms exist. For rays that initially were angled upward (using the negative sign)

= -F4(z, 6(s)) - F4(s, 6(s)) - 2 n F,4(0, 6(s)).

(2.21)
after they have been refracted downward and have been reflected n times from the
ground. For rays that initially were angled upward and have been reflected upward n
times from the ground and have not been refracted downward following that reflection

r = F4(z, 0(s)) - F3(s, 6(s)) -2 n F3(0, 6(s))
(2.22)

Thus an i = 3 type ray leaving the source upward is first described by (2.18) or (2.22)
with n = 0 before it is refracted downward through a turning point. After it is refracted
downward the first time it is described by (2.21) with n = 0. Following its first reflection
from the ground it is given by (2.22) with n = 1, then by (2.21) with n =1 between
refraction through a turning point and reflection, then (2.22) with n =2, etc.

For rays that initially were angled downward (using the positive sign)

r=Fg(z, 6(s)) + Fa(s, 6(s)) -2 n F5(0, 6(s))

(2.23)

after they have been reflected upward n times from the ground. For rays that were

12



initially angled downward (using the negative sign)

= - F3(z, 6(s)) + F3(s, 6(s)) -2 n F3(0, 6(s))

(2.24)
after they have been reflected n times from the ground and have been refracted
downward through a turning point.

Thus ani = 3 ray that is initially angled downward at the source will first be
described by (2.19) or (2.24) with n = O until it reflects from the ground, then by (2.20) or
(2.23) with n = 1 between reflection and refraction through a turning point. Following
the turning point and before the second reflection (2.24) with n = 1. Then by (2.23) with
n =2, etc.

The functions F; are given by

J(Az+B)(Cz+D) E ¢+ 1
F.(z, =
o2 86 A s (65)
(2.25)
fori=1,
3
2 2
5@&@»:3CJE(Cz+D)
(2.26)
fori =2, and

13



J(Az+B)Cz+D) E af1
F.(z, 0 = —
3(2, 6(s)) A e A G an (¢)

(2.27)
fori=3. Asdiscussed above, the i = 1 case occurs for A greater then zero or for

Cos 6(s) < Cos © (6 > 8) where

s AT
+as+T

Cos 0 = —_—
1+as

(2.28)

Rays with values of the initial angle, 6(s), greater the value of the angle given by (2.28)
then escape from the trapping effect of the inversion. The ray with A equal to zero or

8(s) = @ is the limiting ray that has its turning point at infinity (the i = 2 case), while the

rays with i =3 correspond to negative values of A or Cos 6(s) > Cos® (6(s) < 8), and
are the rays trapped by the ground. Rays with initial downward slopes can be divided
in a similar manner but in all cases at least one reflection occurs before the ray
escapes the trapping effect of the inversion, is the limiting case, or becomes trapped by
the inversion.

Figure 2.3 is an example of the rays calculated from the above equations for the
case of an inversion.

14



3.0 LAPSE CASE SOLUTION

The solution of the problem posed by equations (1.2) to (1.4) incase of AT >0, a
lapse condition, was undertaken first. The general approach used in both the lapse
and inversion cases was to first separated out a sinusoidal time dependence from the
pressure, and then to Hankel transform the governing equations with respect to the
horizontal distance from the source, r, to reduce the number of independent variables
to one, the vertical height, z. This reduces the governing equation for the transformed
independent variable to an ordinary differential equation for which an approximate

solution can be obtained. This solution contains the Hankel transform variable, B,
which replaced the horizontal distance in the transformed governing equation. The
transformed solution must then be inverse transformed to return to physical space.
Because of the complexity of the solution this inverse transform can not be carried out
exactly and either an approximate inversion must be used or the inversion must be
carried out numerically. Both approaches were used in the lapse case. In both of
these approaches it is necessary to to interpret the Hankel transform variable as a
complex variable and to continue the solutions off the real axis for the transform
variable. This is not an intuitive process as the physical interpretation of the transform
variable is lost off the real axis. This process will be discussed in detail below.

With the solution obtained for complex values of the transform variable attention
will be turned to the inversion of the transformed solution. The methods used are the
classical saddle point approach and a Fast Fourier Transform (FFT) based numerical
method. These methods are describe in detail elsewhere and will be only described
briefly here. Finally the results of these approaches will be described.

15



3.1 Transformation and approximate solution

The time dependence in the governing equation and boundary conditions,
equation (1.3) and (1.4) can be removed by assuming

p(z.rt)= e Gz 1)

(3.1)
The Hankel transform or two-dimension Fourier transform for an axisymmetric function
can be defined [6] as

G(z,B) = j@(z, r) r J,(Br) dr
0

(3.2)
and the inverse transform as

G(z.n = [ Gz, B) B J,(Br) B
0

(3.3)
The use of transform methods in solving partial differential equations arises from the
fact that an appropriate transform will convert a particular type of derivatives into an

algebraic term expressed in terms of the transform variable (B in (3.2) and (3.3)) in
place of the original physical independent variable (r in (3.2) and (3.3)). Thus the
number of independent variables in the partial differential equation will be reduced by
one and the transform variable acts only as a parameter in the transformed solution. In

16



the case of Hankel transforms the radial‘dependence in the Laplacian operator
expressed in cylindrical coordinates for a axisymmetric function is converted to an
algebraic term, see [6] for more details. Applying (3.2) to (1.3) leads to

2
dG 2 1+az
__2+[%___+.__.-BZ]G=.-::6(Z-S)

dz a,,1+ozz+—

T

(3.4)
The term on the right hand side represents the source. The homogeneous form of this
equation would have a solution with an oscillating behavior if the term in square
brackets was positive and an exponential behavior if it was negative. Thus the
transition occurs when the term is zero or

1
B= KON __.1_'&2.__
i ° 1+az+ _1_&_'_[_
T
(3.5)
Notice that if
|
B = .;9.. _1.:_(_1.1_:'._. Cos e(s)
o 1+0s+ -:r—
(3.6)

then equations (3.5) and (2.14) are very similar and we can interpret (3.5) as giving the

value of B that causes the turning point (the location of the transition from oscillatory to

17



exponential behavior as well as a horizontal ray) to be located at the height z. But (3.6)

remains to be be interpreted. From (2.1) and (2.2), however, one finds that B is equal to
(w/a..) times the cosine of the angle that a ray, which was initially at an angle 6(s),

makes in the limit as height tends to infinity. Thus just as we have used 6(s) to identify

a ray we can also use the Hankel transform variable B. This discussion emphasizes
the close relationship between the model being developed and the ray description.

These parallels will be also be pointed out below.
If height is nondimensionalized in (3.4) using the scale of the temperature

gradient, a, a uniformly valid approximate solution to the resulting equation can be

obtained, using the method presented by Nayfah [7], for large values of w/(a_a) as

A B
G = —————=h,(n(z, B)) + —=3 h,(n(z, B))
0,28 | Jozp
(3.7)

where

3

2 AT 1+0z a_ 2
g@p=truzry) [ —F=-(=p)
- 1+az+T—-

18



14T 1 _ 1-¢
2T. a 2 |ﬂ(1+¢)
1-(—=8)
()]
(3.8)
2
1+az a_
AT _(EB)
1+az+T—-
d= = 3
a
1 (;B)
(3.9)
3
3 2
n(z.ﬁ)=(5?~) a(z, B)
(3.10)

and

gz(Z. B) = M
0z

(3.11)

The modified Hankel functions h, and h, are defined in [8] by

19




1
3 3

3 1 S
n@=(2) & niZe)

3

(3.12)
and

1
31 3
2 2 ..(2, 2
n®)=(2) & v Zer)
3
(3.13)
A and B are constants that have to be determined. This solution is rather complex and

is expressed in terms of unfamiliar functions. Several important features of this solution
need to be discussed to understand it.

The functions h4(€) and h,(§) have a complicated behavior [8). For real values of
the argument both h; and h, yield a complex results which is oscillatory with an
algebraic decay of the amplitude for increasing magnitude of the argument. The

function hy can be shown to represent downward propagating waves (for e'* as used

here) and h, upward propagating waves. The oscillatory behavior also occurs for h;
when the phase of the argument is equal to 21/3 and for h, when the phase of the
argument is -2/3. When the phase of the argument is /3, h, decays exponentially

and h, grows exponentially. When the phase is -n/3, h, decays exponentially and h;
grows exponentially.
The solution of the point source problem is closely related to the plane wave

20



problem discussed in [9]. In wave problems where transforms have been used the
inverse transform can generally be interpreted as a superposition of plane waves over
a range of angles. In the case of the Hankel transforms used here the limits of

integration on B are from zero to infinity and B can be interpreted as wa,, Cos 6,_ where
0_ is the angle between a ray and the horizontal in the limit of height tending to infinity

as givenin (3.6). Thus a value of B of zero corresponds to a ray which is propagating

vertically upward at infinite height, a value of B of w/a_ corresponds to a horizontal ray

at infinite height, and a value of Bof wva_ {1 + az]/[ 1 + az + AT/T_, ]}/2 corresponds to

a ray with imaginary slope at infinity such that its turning point (point of horizontal slope)
is located at the height z. Based on this description the waves group themselves into
several different forms.

The first group, 0 S B < By =aw/a. {1 /[ 1+ AT/T_.]}'2, are waves with their turning
points at or below the ground surface and thus are actually reflected at the surface.
These waves plus their reflections constitute the first group. The wave with B =,
grazes the surface and is the limiting ray between the reflected and refracted rays. The

second group, B, <B<P, = wa.{[1+0z]/[1+0z+AT/T.]}'”2 are waves with a

turning point above the ground and below the observer height z. The waves in this
group consist of those leaving the source in the range of angles described by (3.6) and

their continuation after they have been refracted upward. The third group has B, <P <

B,= wa . {[1t+as])/[1+as+AT/T, ]}'2. These waves have their turning point above

the observer and below the source. Atthe observers location these waves should yield

21



a exponentially decaying solution. The waves in this group consist of those leaving the
source in the appropriate range of angles and their continuation following refraction

upward. These three groups of rays can all be seen in a ray diagram for a point source
and all initially are propagating downward from the source. In addition there are waves

propagating upward initially. These are in the range 0 < 8 < B, but differ from the first

groups in that they do not originate as downward propagating waves that are reflected
or refracted upward. Thus the "reflection™ coefficient is missing from these waves.

In addition to the above groups that can be seen in a wave diagram for a point
source, there are several types that are necessary for the superposition given by (3.3)

where B ranges from zero to infinity, but do not occur in a ray diagram for a point

source. Group five consists has B, < B < w/a.., these anes have the turning point

above the source. In addition there are waves with w/a,, < B, these have no physical

interpretation and correspond to complex angles at infinity.
With these concepts let us proceed to the mathematical solution to the problem.

The function g32 given in (3.8) contains four branch points, two at p =+ B, and two at B

=+ w/a,. The negative branch points are not significant anc‘j will not be discussed. On
the real B axis, for 0 < B < B,, g%2(z, B) is real. For B, < B < wa,. g%2(z,B) is positive and
imaginary, and for B > w/a,, g32(z,B) has a phase of -n at B =w/a_andtendsto a
phase of -n/2 as B tends toward infinity. This is shown in Figure 3.1. The branch line
for g(z,B) = ( g32(z,B))2? can be chosen to be on the line where the phase of g32(z,B) is

-n. This line extends from the first branch point at B, to the second at wa_, and

22



encloses a small region above the positive real axis, see Figure 3.2. The branches

chosen for g(z,B) yield a phase of zero for 0 < B < B,, ©/3 for B, < B < wv/a.., and varying

from -21/3 to -n/3 for B > w/a...
Now by considering three cases the various forms of the solution can be

obtained. These are shown in Figure 3.3. The first case is a wave with the turning

point below the surface, 0 < B < B,. The second has the turning point below the source
but above the surface, B, < B < B,. In this case if the receiver is below the turning point

then B > B,, if it is above the turning point then < B,. The third case has B, <p S w/a,,

and the turning point is above the source. Again if the turning point is above the

receiver then B > B,, if the receiver is above the turning point then B < B,. Note that

these waves do not appear in a point source ray diagram but are needed to complete
the solution.

The solutions corresponding to the cases given above require the determination
of the constants in (3.7). To do this a set of conditions are required. As result of the
source terms in (3.4) the solutions separate into at least two forms, one for the region
below the source and one above. The radiation condition, requiring outgoing waves in
the limit as height tends to infinity, requires A to be zero above the turning point for
z >s. Atthe source height, z=s, the solution must be continuous

lim G(z.B) = lim G(z,B)

zos, z-s.

(3.14)

and must satisfy

23



. 0G, . G, q
lim [—]-lim [—] =+—
z—»s_[ Z] z—»s,[aZ] 2x

(3.15)

which is obtained by integrating (3.4) from z = s - e t0 z = s + € and taking the limit e—0.
At a turning point continuity is required,

im G(z,B) = lim G(z,B)

292y, . Z92p 6

(3.16)
At the ground surface, z = 0, the required condition is the normal impedance condition
(1.4) which can now be expressed as

(3.17)
Using these conditions, equation (3.4), and the physical situations presented in
Figure 3.2 the following solutions can be obtained. Forz>s

G = Khy(n(z,B)) [ hy(n(s,B) + Ry ha(n(s.B)) ]
(3.18)

forw/a,>B,>B,>B,>p>0,
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G =K hz('ﬂ(Z»B)) [ h1(ﬂ(s,B) + R1 hZ(n(sz» ]

(3.19)
forwa,>B,>B,>p>p,>0,
G = K hp(n(z,B)) @™ R, [ hy(n(s,B) + Ry ha(n(s,B)) )
(3.20)
forwa,>B,>p>p,>p,>0and
G = K[ hy(n(z,B)) e™3+ Rghy(n(z,p)) ] ein3
Ry [ hy(n(s,B) + Ry hy(n(s,B)) ]
(3.21)
forwa,>B>B,>B,>P,>0.Forz<s
G = K hy(n(s,B)) [ hi(n(z.B) + Ry ho(n(z.8)) ]
(3.22)
forwa.>B,>B,>B,>P>0,
G = K hy(n(s,B)) [ h(n(z,B) + Ry ha(n(z,B)) ]
(3.23)

forwa,>pB,>B,>p>B,>0,
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G = K hy(n(s,B)) &3 R, [ hy(n(z,B) + Ry ho(n(z,8)) ]

(3.24)
forwa, > B, >B>p,>p,>0and
G =K[hy(n(s,B)) ™3+ Ry hy(n(s,B)) ] em3
Ry [ hy(n(z.B) + Roha(n(z,p)) ]
(3.25)
forwa,>f> B, >B,>B,>0. Where
K = K(g,(2). g,(s.8) = —g ——L—— —1___
21,3V %@B) { o (ep)
(3.25)
v h;(m(0.B)) + iy h,'(n(0,B))
° th,n(0.B) +i v hy(n(0,8))
(3.26)
1;—(1}_-1- Z gzz(O»B)
2pa_ 9,(08)
(3.27)
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2
y=—2-(32)%g (0p)

Po@,

(3.28)

and

(3.29)

The solutions obtained above are for real values of B, but as discussed above B
must be interpreted as a complex vaniable. The boundaries between solutions off the

real axis must be chosen as the branch lines used for calculating the function g(z,B),
g(s.pB) and g(0,8) from g32(z,B), etc. as were discussed above. On crossing these
branch lines it should be noted that the phase of g(z,8), g(s.B) and g(0,8)

discontinuously jumps from -2/3 to 2a/3 and the phase of g,(z,B), g,(s.8) and g,(0.B)
increases by -2r/3 (since it contains the root of g in the denominator).

Reference [8] presents some results for the modified Hankel functions that are
useful for this type of behavior:
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sf. nla‘- lg-
hz(ne )=9 (9 h1(ﬂ)*h2(ﬂ))

(3.30)

and

i2x

hy(ne?)=-hyn)

(3.31)
Using these relations the solution as given by equation (3.18) to (3.25) can be rewritten
and the regions of validity determined. For z > s these are

G = K(g,(2.B), g92(s.B)) {h2(n(z,B)) [ h1(n(s,B)) + Ry(g(0,B)) ha(n(s.B)) I}
(3.32)

in region A of B-space as given in Figure 3.4

G = K(9;(z.B), 9;(s.B)) {h2(n(z,B)) [ hy(n(s,B)) + R,(9(0,B) € 2%3) hy(n(s,B)) ]}
(3.33)

in region B

G = K(g,(2.B)e" 1273, g,(s,B)) {ha(n(z.B)) [ hy(n(s,B) e 2n3)

+ Ro(g(0,B) €273 ) hy(n(s,p) ei2R) |}
(3.34)

in region C
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G = K(g,(2,B)e- 1273, g,(s,B) @ 1273 {hy(n(z,B) 6/ 23 ) [ hy(n(s,B) €273
+ R,(g(0,B) €273 ) hy(n(s,B) el 2x3) |}

(3.35)
inregionD. Forz<s
G = K(g,(z.B), 9(s.B)) ha(n(s,B)) [ hy(n(z,B)) + R, (g(0.B)) ha(n(z,8)) ]
(3.36)
in region E
G = K(g(2.B). g;(s.B)) ha(n(s.B)) [ hy(n(z.B)) + R, (9(0,B) & 273 ) ho(n(z,B)) ]
(3.37)
in region F
G = K(g,(z,B). 9,(s.B) & 123 ) hy(n(s,B)) [ hy(n(z,B) i 2%3)
+ R, (9(0,B) €' 203 ) hy(n(z,p) 61 203 ) |
(3.38)
in region G and
G = K(g,(z.B)e 1273, g,(s,B) " 1273 ) hy(n(s,B) €/ 2v3) [ hy(n(2,B) &' 23)
+ R, (9(0,B) €273 ) hy(n(z,B) &' 203 )
(3.39)
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in region H. To obtain these results it is necessary o recognize that

.2
i=-x

R,(@(0.8)) =R, ((0.B)e * )
(3.40)
From these resuits and the description of the behavior of the function g(z,B) (and
therefore n) at the branch lines it should be clear that the solution is continuous at the

branch lines even with g(z,B) being discontinuous. This transformed solution must
now be inverted.
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3.2 Lapse Results

Two methods were used to approximately invert the Hankel transform contour
integration which lead to the saddle point method in the insonified region of physical
space and a FFT based numerical method. Neither of these methods will be described
in detail as the basic method is well known in both cases and the specific application
has been described in detail elsewhere.

Both of these approaches are based on the concept that although the inversion
integral (3.3) is defined as being carried out along the real axis, the residue theorem of
complex vanables [10] allows the path of integration to be changed provided that there
are no poles of the integrand between the original and modified paths. If poles exist
then additional terms must be included with the integral along the modified path. In the
case of an isothermal atmosphere the additional term due 1o the pole leads to the
surface wave term. In the lapse case the only possible pole is the due to the
denominator of the term multiplying the upward going wave (the reflection coefficient in
the case where a reflection occurs) being equal to zero. These case has not been

completely examined but in the limit of AT equal to zero it reproduces the surface wave

term. Thus one clearly expects to see a similar behavior in the case of weak lapse
condition. This surface wave like-behavior has not been investigated beyond the point
described above and has not been included in the results given below.

3.2.1 Contour Integration-Saddle Point Method

Integrals of the form
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&) = j o's"® 4o
c

(3.41)
can be approximately evaluated by the saddle point method if the path of integration C

is such that the ends of the path do not significantly contribute to the integral, £ is a

large parameter, and f(B) has a point where the first derivative is zero. Complex
variable theory indicates that a function can not have maximum in the region where it is
analytic and a point where its first derivative is zero must be a saddle point [10]. Ata

saddle point if the path-of integration follows the line of constant real part of f(B) then
the imaginary part f(B) either increases or decreases at a maximum rate. If the path of
integration follows the line of constant imaginary part of f(8) that passes through the
saddle point then the real part of {(B) increases or decreases at a maximum rate. If we

choose to follow a line of constant real part of {(B) through the saddie point in the
direction such that the imaginary part increases at the maximum rate then the
magnitude of the integrand decrease rapidly as we move away from the saddle point. If

¢ is large then the only significant part of the integral is near the saddle point and the
integral can be approximated by using the first two non-zero terms in the Taylor series

for #(B) yielding the well known results given in [11].

This method works well when a saddle point exists. However when one does not
exist then an approximate integration can be carried out as described in detail by Ma
(12}

To apply this method to the integrals given by (3.3) with (3.32) to (3.39) both the
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Hankel functions and the modified Hankel functions must be replaced by their
asymptotic expansions and the integral regrouped to extend from negative infinity to
positive infinity. When this is done the result contains twenty terms since the integrand
is different between in the various regions in B-space and in each part of the G function
contains two terms. Thus writing out only the terms of interest for z > s yields

= . C{BreAlg @B)-g (s8)]-x12)
Gz p) =... + j Ke(z.8) e ¢ @ ' dp
0

B e ,2
‘*J‘K7(Z.l3)e"{BH {9 @B)-9 (sB))-=x } B

B

+ ...

¢ HBronlo @B +o (8 -20°08)]-n R
+IK16(Z'B)e"( r+ [9 (.)4‘9 (s.B) ] (oB)]'n )dB
0

'I
o

: {Brarlg @B)+g (s8)]-x/6)
- + . -+ N -
+ f K, (z.8) 8 dp

Po

(3.42)
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and forz<s

Bo " -
-é(z")=---+IC6(z.r) o {{Bredlg (sh)-g (z.B)l-mz}dB
0

B, . o . " . )
+J-C7(Z,B) e"{b"" [g (s. )-9 (2 )] n }dB
Bo

+ ...

Po

i{Brexlg @B)+g (s8)-20 (08)]-x2)

- + il + 1] - 1} e

+[czpre ¢ dp
0

B:

BreAlg @B+ (s8)]-x/)
+jC17(z,B)e{ +A[g (zB)+9 (sB))-= ap

Bo

(3.43)

To find the saddle points the arguement of of exponeéntial term must be differentiated

with respect to B and set equal to zero. On differentiating one finds
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AT
3 + —
1 (!S+T

Y q 4a
—aa-(xgz(z.m)rﬂz. Cos'{—=\ [ ————=B})
B ® 1+as

(3.44)

where F(z,0(s)) is the function defined in (2.10) and used to describe the rays.
Differentiating the arguments of the exponentials then yields equations (2.6) to (2.9),
the equations defining the rays. Thus the saddle points associated with a particular

point in physical space (in the insonified region) corr’eépond to the values of B (or 6(s)
where the two are related by (3.6)) that defines the two rays passing through the point
in physical space. Just as the rays were interpreted as upward-going-direct waves,
refracted waves, etc. the terms in (3.42) and (3.43) also have the same interpretations.
Determination of the saddle point values then first requires determination of the types of
waves present at a particular physical location and then solution of the appropriate two
of equations (2.6) to (2.9). Once the location of the saddle point has been determined
the classical results may be applied. A computer program for carrying out this
procedure and the resulting equations to approximate the inversion integral have been
given in detail by Cheng [13] and will not be repeated here. A typical result is shown in
Figure 3.5.

As the physical location of the receiver moves into the acoustic shadow real

values of B or 6(s) cease to exist. Ma [12] has suggested an approximate approach
which is also based on contour integration. In this approach the inversion integral

between B, or B, and wa,, is carried out numerically and the remainder of the integral

exiending from negative infinity and to positive infinity are carried out in a manner
similar to the saddle point method. The integral carried out numerically physically
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represents the contributions of the exponentially decaying disturbances due to waves
with turning points above the receiver. Ma [12] also incorporated into his program
Cheng's saddlie point method for the insonified region with some changes. A typical
result is shown in Figure 3.6.

Both of these methods suffer from discontinuities as the receiver passes from a
region where the receiver senses a direct and a reflected wave to one where a direct
and a refracted wave would occur. This results not from the transformed solution which
is continuous, but from the large argument approximation that must be made to obtain
the saddle point form (3.41) and from the fact that the argument becomes zero at most
of the boundaries. As a result of these intrinsic problems with the saddle point method
a numerical approach was then applied.

The saddle point method has the appeal of a physical interpretation of the
mathematical steps and results. A purely numerical method loses that interpretation
and the physical insight that comes from it.

3.2.2 Numerical Integration Method

The numerical approach used was developed by Richards and Attenborough [14]
and was applied to the present case by Lloyd [15]. The method approximates the
inversion integral by using a Fast Fourier Transform (FFT) algorithm. To obtain an
integral suitable for the use of the FFT algorithm the Bessel function containing the
horizontal distance dependence must be approximated by its asymptotic expansion.
Three other modifications are then carried out. First, the integration path is modified to
be above the real axis (Richards and Attenborough's original approach was to
integrate below the axis but they also assumed e-#.), this avoids the discontinuities at
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the branch points but requires integration up the imaginary axis. Second, the integrand
is modified to make the integral along the imaginary axis zero, but, as claimed by
Richards and Attenborough, to not change the result. Finally an approximate term is
added to account for the finite upper limit and to approximate the integral to infinity.

This approach is described in detail by Lloyd [15] and Figure 3.7 is a typical
result. Disadvantages of this approach are the large amount of computer time required
and that a entire horizontal profile must be obtained at each receiver height. Thus to
obtain a vertical profile many time consuming computer runs must be made and one
point out of several thousand points is actually used from each run. This approach
clearly does not contain the discontinuities present in the saddle point method. Figure
3.8 compares the saddle point method and the purely numerical method. The
agreement is excellent in the insonified region with the exception of the region very
near the shadow boundary. The agreement is good in the initial sound level decrease
as the shadow boundary is crossed but the saturation region deep in the shadow is not
the same for the two methods.

The numerical method often results in oscillations in the sound leve! at large
distances from the source, this appears to be an artifact of the numerical inversion
method and is dependent on the parameters of the inversion scheme. Also as very
large distances are approached the calculated sound level often increases this is
clearly due to the numerical inversion method. These points are further discussed by
Lioyd [15] and a listing of Lloyd's program is given in Appendix A.
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4.0 INVERSION I

The inversion solution, AT < O, follows very closely along the lines of the lapse
solution. The governing equation and boundary conditions, (1.2) to (1.4), are identical
in the two cases and the approach using Hankel transforms is also the same. Again the

solution requires analytic continuation off the real B axis. This has proved to be difficult
and lead to several errors initially. (The solution given in the Sixth Semiannual Report
[18] are incorrect.)

Although the solution can be discussed in terms of rays and the closely related
saddle point method, this approach has not been used to approximately evaluate the
solution in the inversion case. In the lapse case only two rays, at most, pass through a
given point. In the inversion case, at large distances from the source, many rays may
pass through a given point due to the "trapping” effect of the inversion. Since the
saddle point method requires all of these rays and their corresponding saddle points to
be located, and this is the most difficult part of the method, the approach becomes
impractical. Thus only the purely numerical method of inversion has been used.

4.1 Transformation and approximate solution

The time dependence is removed from (1.3) as in (3.1) and the resulting equation
Hankel transformed using (3.2) to obtain (3.4). Again the location (in terms of the

transform variable B) of the transition from oscillating to exponential behavior is given

by (3.5). However, since AT/T_, < O the transition is at a value of B greater then w/a,.

Using (3.6) and comparing results to those of Section 2.2 one can interpret the solution
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in the range 0 < B < w/a_ as representing the rays that will escape the trapping effect of
the inversion. These rays either go directly from the source to infinite heights or go
from the source to the ground where a reflection occurs and then go to infinite heights.
In the range w/a_ < B < B_ the solution represents rays that are trapped by the

inversion. The transition given by (3.5) applies to rays in this range. Beyond this range
the rays do not occur in a ray diagram.

The solution of (3.4) can again be approximated by (3.7) and (3.9) through (3.11).
Equation (3.8) must modified by a negative sign on the right hand side yielding

3 }
2 AT 1+0z a_ 2
zB)=-(1+0az +— —_— (=
0’28 =~ ) —-(=p)

1+02+—
T~
1 AT 1 140
—— in
+2T a 2 (1-¢)

(4.1)

This change is necessary since the region of oscillatory solution is below the turning
point in the inversion case while it was above it in the lapse case (see Nayfeh [7]). In

the inversion case AT/T_<Oandthus®>1for 0 <P <w/a_ Itis convenientto note

that we may rewrite the logarithm term in this case as
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_1_ln(1+0
2 1.0

)=Tanh'1(%) +id
(4.2)

to clearly indicate the choice of the branch of logarithm, In(-1) = +i &, the opposite of that
in the lapse case. Thus, in the range 0 < B < w/a,.. g32(z,B) ranges from slightly below
the negative real axis to infinity along the negative imaginary axis. For values of

between wa_, and B, ranges along the positive real axis from infinity to zero. For real B

greater than B, values of g32(z,B) are along the positive imaginary axis, see Figure 4.1.

As in the lapse case the boundary between these regions are branch points of the
function g32(z,B) with the branch lines extending downward from the branch points for
Re(B) > 0 in B-space.

The argument of the Hankel functions involves g(z,B) = (g32(z,B))2® and again the
branches must be chosen with care. For 0 < B < w/a_, g(z,B) is chosen such that its
phase ranges from slightly greater then zero (or 2r) at § = 0 to n/3 as the branch point

at B = w/a, is approached from values of B less then wa,,. In this region the two
modified Hankel functions have an oscillatory and exponential growth or decay
behavior with with one (h,) representing upward traveling and decaying waves and

the other (hy) downward traveling, growing waves. In the range w/a.. < p < B, and

g372(z,B) is real and positive. The function g(z,B) is chosen to be on the line with phase
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-2r/3. In this case the modified Hankel function h, represents both upward and
downward traveling waves, a standing wave-like phenomeﬁa, and h, a downward
traveling wave.

The branch line for g(z,B) = (g32(z,B))2? needs to be deﬁne& to extend these
solutions off of the real axis. Lines of constant phase of g32(z,B) run from the first
branch point to the second in a manner similar to the lapse case, but with the order of

the branch points reversed. Figure 4.2 shows the behavior of these lines of constant
phase. Again a line of constant phase is a convenient branch line.

If the line where the phase of g32(z,B) equals -n/2 is chosen as the branch line for
g(z,B) = (g%72(z,B))27 then the phase of g(z,B) can be made to agree with the desired

values on the real axis as described above. In addition for real B and B, < B, g(z.B)

has a constant phase of /3 with hy(n(2,8)) having a decaying exponential behavior for

increasing z and representing the contribution of waves with a turning point below the
receiver's height to the total pressure field.

Using the conditions given in (3.14) to (3.17) and the physical descriptions of the
type of waves that occur in each situation the following solutions can be obtained. For

Z>S
G =K[h,(n(s,B)) + R, h,(n(s,8) ] hy(n(z.B)

(4.3)

which is identical to (3.18) for B, > B> B,> w/a.>p>0,
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G =-K[h,(n(s.B)/ R, + h,(n(s.B)) ] h(n(z.B)

for Bo> Bs> BZ>B>m/a_,> 0,

.2n
[lediy

G=-Ke ® [h,m(sB)/R,+hyn(s.B)]h,m(zB)

for B,>B,>B> B,>w/a_>0 and

G =K[h,(n(s,B) + R, hy(n(s.B)) ] h,(n(z.B)

for >p> B,>B,> wa_>0. Fors>2

G = K[ h,(n(z.,B) + R, h,(n(z.B)) ] hy(n(s.B))
the same as (3.22) for B_>B,> B, >wa_ > p>0,

G=-K[h,MzB) /R, +hyn(zp)]h,n(s.p)

for B, >B,> B,>B>wa_ >0,
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(4.7)
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2%
G=-Ke’ [h,(n@B) /R, +hyn(zp) ] hyn(s.p)

(4.9)

forB,>B,>p> B, >wa_>0and

G =K[h,(n(z,8)) + R, hy(n(z,8) ] hy(n(s,B))
(4.10)
for B,>PB> B,>PB,>wa_>0. Here Kand R, and R, are defined by (3.25) and (3.26)

and
K

.iX
'3,R -e
Ry=e 3(—2ﬁ‘,_-)

(4.11)

As discussed above these solutions must be continued off the real axis. As in the
lapse case the boundaries are chosen as the branch lines for calculating g(z.B), a(s,B)
and g(0,B) from g32(z,B), etc. On crossing these branch lines the phase of g(z,B), 9(s.B)
and g(0,B) jumps discontinuously from n/3 to - = and g,(z,B), g,(s,B) and g,(0,B) jumps
discontinuously by 2r/3. Using (3.30) and (3.31) solutions (4.3) through (4.10) can be

continued off the axis as
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G = Ki(g,(2.B). g,(s.B)) [ hy(n(s.B)) + R,(g(0.B)) h,(n(s.B)) ] h,(n(z.,B))

(4.12)
in region A of Figure 4.3
o fo— -i-zz iﬁ
G=K(g,zpe °,gfBe )[hmispe’)
i.‘l i“—’t iﬂ
+R (908 e °)hn(s.Be *)hmzpe )
(4.13)
in region B,
I 4
G=Kig,(zB). g,sB) e *)[hnispe )
i.‘—u. iﬁ
+R,(90.8) e *)h,m(s.B)e ) hyn(zB)
(4.14)

in region C and

.4n

G = K(g,(z,B), g,(s.B)) [ hy(n(s.B)) + R,(g(0.p) e %) h,(n(s.B)) ] hy(n(z.B))

(4.15)

inregionD. Forz<s

G = K(g,(z.B). ,(s.B)) [ h,(n(z.B)) + R (g(0,B)) h,(n(z.B)) ] h,(n(s,B))
(4.16)
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in region E,

. i il
G=K@g,zBe ’,gspe *)[hmzpe )
, 4 . 4 . 4n

+R (9O e “YhmzBe *)hmisHe )

(4.17)

in region F,

" 4
G=Kig,zBe °.g,s8)[hmepe )
+R(g0.8) e *)hm(sB)] hnzpe °)

(4.18)

in region G and

. 4r
G = K(g,(2.8), 9,(s.8)) [ h,(n(z.8)) + R (g(0.8) & °) h,(n(z.8))] h,(n(s,B))

(4.19)

in region H.
From these results and the description of the behavior of the function g(z,8) (and
therefore 1) at the branch lines it should be clear that the solution is continuous at the

branch lines even with g(z,B) being discontinuous. The transformed solution must now

be inverted using the riumgrical method developed by Richards and Attenborough [14].
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4.2 Inversion Case Results

As was discussed above the numerical method originally developed by Richards
and Attenborough [14] was used to invert the Hankel transformed solution in the case
of the inversion. This was due to the fact that many rays pass through a given point in
physical space in the case of an inversion and the number of saddle points which exist
equals the number of rays passing though that point. Since finding the saddle points is
the most difficult and time consuming part of that method the approach appeared
impractical in this case. The numerical method used is identical to that of the lapse
case as described by Lioyd [15].

Only a limited number of cases have been run to date using the solution
described in Section 4.1 and the numerical inversion technique. Figure 4.4 shows a
typical case. The results generally show an interference pattern with 6 dB/doubling of
distance decay out to distances of the order of thirty meters and a more complicated
behavior beyond that distance but with no significant change in the rate of decay. This
latter result is somewhat unexpected from qualitative arguments. Experimental data for
propagation under inversion conditions is quite limited, with the data presented by
Sutherland and Brown [16] being the major set. However, this set contains only seven
measurements at a fixed height over a 675 meter distance. No direct comparisons
have been made but the data also shows what appears to be a 6 dB/doubling of
distance decay with some interference minima. Thus at least qualitatively the
agreement appears good.

Appendix B contains a listing of the program for the Inversion case.
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5.0 CONCLUSIONS

Approximate solutions of the Hankel transformed acoustic wave equation with a
particular, realistic and well-developed vertical sound speed (or temperature) profile
have been obtained for both the lapse and inversion cases. These solution are quite
complex and exact inversion of the transformed solution does not appear possible.
Both approximate inversion using contour integration and the saddle point approach
and numerical inversion have been used to obtain the physical solution in the case of
Iapsé conditions. Only numerical methods have been used with inversion condition.

The lapse case shows the expected behavior: an interference pattern with a 6
dB/doubling of distance decay within the shadow region; a rapid decrease in sound
level in the vicinity of the geometric shadow boundary; and approximately a 6
dB/doubling of distance decay well within the shadow region. Similar behaviors occur
for both inversion methods but the contour integration - saddle point method yields and
larger decrease in the sound level on passing into the shadow than the numerical
integration technique. The origin of this difference has not been determined. The
contour integration - saddle point method results appears to agree with the empirical
model of Weiner and Keast [17] better then the results of the numerical inversion
technique. Since the techniques are applied to the same approximate solution of the
transformed acoustic wave equation the difference must resuilt from the inversion
techniques. The numerical technique also produces a weak interference-like behavior
far into the shadow region. This appears to be artifact of the numerical method as is the
increase in sound level that frequently occurs as the maximum distance for the
inversion technique is approached.

Agreement between the results and experimental data is fair within the shadow
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boundary. The level is predicted well but the location of interference maxima and
minima are not accurately predicted. This may be due to the poor fit of the temperature
profile to the measured profile. No data appears to be available that both gives a
temperature profiles and sound levels in the shadow region.

The inversion case shows an interference pattern with a 6 dB/doubling of
distance decay out to distances of the order of thirty meters for realistic temperature
profiles. Beyond this distance the decay rate appears to remain nearly the same but
the structure of minima and maxima becomes irregular. This tends to agree with a
simple geometric argument since "trapped"” rays start to reappear in a ray diagram at
such distances. Little data is available for comparison in the inversion case.
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7.0 LIST OF SYMBOLS

English

QIO MM MM MO OO®W>W

b

o o
N

[}

"0V XXSLHLT T

0O
3

Sound speed.

Function defined by (2.4) or constant in (3.7).

Function defined by (2.5) or constant in (3.7).

Function defined by (2.6).

Constants.

Function defined by (2.7).

Function defined by (2.11).

Arbitary function

Function defined by (2.10).

Function defined by (2.25).

Function defined by (2.26).

Function defined by (2.27).

Function defined by (3.8).

Hankel transform of G.

Acoustic pressure with time dependence seperated out, see
(3.1)

Modified one-third order Hankel function of the first kind, see
(3.12).

Modified one-third order Hapkel function of the second kind, see
(3.12). '

V-1 :

Intergal defined by (3.41).

Zero order Bessel Function.

Function defined by (3.25).

Constants

Acoustic pressure.

Constant determining the strength of a point acoustic source.
Horizontal distance from the source.
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Horizontal distance from the source.

Function defined by (3.26).

Function defined by (3.29).

Function defined by (4.11). o~
Height of the point source above the ground.
Time.

Temperature.
Height above the ground surface.

Acoustic impedance of the ground surface.

Scale factor for temperature, see (1.2).

Hankel transform variable replacing r, see (3.2).
Function defined by (2.17).

Delta function.

Function defined by (3.10).

Angle an acoustic ray make relative to horizontal.
Limiting ray angle, see (2.28).

a_/(wa).

Arbitrary arguement

Density of the air.

Function defined by (3.27).

Function defined by (2.12).

Function defined by (3.9).

Function defined by (3.29).

Circular freduency.
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Combinations

AT - Change in Temperature between the ground surface and
far above the ground.

Subscripts other than given above

i 1,20r3.

o} Evaluated at the ground, or a reference value.

tp Evaluated at a ray turning point.

s Evaluated at the source height s.

z Derivative with respect to height (g, or g,,) or evaluated at the height 2.
oo Evaluated at infinite height.
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Figure 1.1. Temperature as a function of height above the ground for different times of

the day as determined by Best [1].
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Figure 1.2. The present model of temperature as a function of height and a set of

observations by Butterworth {4].
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Figure 2.1. The nomenclature used in defining the rays.
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Figure 2.2. Acoustic rays for d lapse case with a = 1.75 m™1 and AT/T o = 0.03 with a

source at a height of 2 m.
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Figure 2.3. Acoustic rays for an inversion case with a = 1.75 m™! and AT/T oo =-0.03

with a source at a height of 2 m.
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Figure 3.1. Path followed in complex g3/2 - space as the real part of B varies from zero

to infinity and the imaginary part of B is constant for the lapse case.
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Figure 3.2. Sketch of the location of the branch line used for calculating g (z,p) =
(g3/2 (z,8) )23 in the lapse case.
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Figure 3.3. Sketch of the three types of physically occuring rays in the lapse case.
Type 1 rays have their turning point below the ground surface. The turning point for
type 2 rays is below the source and above the ground surface. Type 3 waves have a
turning point above the source, this type of ray does not appear in a point source ray
diagram but occurs in the superposition making up the inverse transform.
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Figure 3.4. Sketchs of the regions in complex B-space where the various forms of the

solution are valid for the lapse case. Part a) is for points above the source, part b) is for

points below the source. The lines are branch lines for g (0.8), g (z,B) and g (s,B).
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Waeiner and Keast [17)
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Figure 3.5. Typical results for a lapse case using the saddle point method only, from
Cheng [13], as compared to the Weiner and Keast empirical model [17]). The solution
extends only to the shadow boundary at about 68 meters.

63



SOUND PRESSURE LEVEL @8

60.

o Results of Ma[1
50. “\ a12]
i / Results of Weiner
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Figure 3.6. Typical results for a lapse case using the combined saddle point-contour
integration method. From Ma [12].
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Results of Lioyd[15]
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Figure 3.7. Typical results for a lapse case using the numerical inversion technique.
From Lloyd [15].
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Figure 3.8. Comparison of the results of the saddle point-contour integration method

and the numerical technique for a lapse case.
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Re(g" )

Figure 4.1. Path followed in complex g3/2 - space as the real part of B varies from zero

to infinity and the imaginary part of B is constant for the inversion case.
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Figure 4.2. Sketch of the location of the branch line for calculating g (z,8) =

(g3/2 (z.B) )23 in the inversion cass.

68



Im(B)
a)z>s
A B
c
D
a&“ B, B, Bo Re(p)
Im(B)
b)z<s
E F
G
H
;"’: B, B, B_ Re(p)

Figure 4.3. Sketch of the regions in complex B-space where the various forms of the
solution are valid for the inversion case. The lines are branch lines for 9 (z.B). g (s,B)

and g (0,B).
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Figure 4.4. Typical results for an inversion case using the numerical inversion
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APPENDIX A - The Lapse Case Program

The material below is from Lloyd [15] and both describes the program used to
calculate the transformed solution and to carry out the inversion and presents a listing
of that program. The program is named FFTPRESS and was written to be used on a
VAX 750. Descriptions are given both of the subroutines comprising the program, of
the input variables and a set of "helpful hints™ are given that may be useful in running
the program. The intent of this section is not to describe in detail the operation of the
program but to allow a somewhat experienced Fortran user to run the code as it was
created.

SUBROUTINES

Input: Subroutine to input the necessary parameters to the main
program. The following sentences summarize each of the input variables
in the order they are requested. Tinf is the temperature at infinite height,
normally 300 K. Tinfis used to calculate the speed of sound a. Dtot is the
temperature change from infinity to the ground normalized by the
temperature at infinity. Dtot is normally 0.025. Alpha is the term used in
the temperature profile defining the altitude at which the temperature
gradient becomes effective. Alpha is normally 2.5 (meters)". Spiref is
the reference sound pressure level used in the calculations of sound
pressure level in dB. Omega is the frequency of the sound source in
rad/sec. Resistance is the flow resistance used in the Chessel model and
is normally 300 cgs units. Zr is the height of the receiver in meters. Zs is

the height of the source in meters. Alp is the amplitude of the imaginary
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component in transformed space. Alp greater than zero is integration

above the real axis. The product of Alp and the step size AK should not

exceed 0.01 and may be much smaller. Alp is replace by p in the thesis. Ns
is used in an analytical function that is subtracted from the sampled

solution to null the effects of off axis integration. Ns is normally 3. If Ns

is equal to zero then no subtraction occurs. Ns is replaced by & in the
thesis. Me nonzero signals the inverse Hankel transofrm routine that the
terms representing the integral extended to infinity are to be included in

the inversion. Me is also the number of terms to be used and is normally 5.
Me is replaced by M in the thesis. N1 is the number of points to be used.

N1 depends on the maximum horizontal distance desired. N1 equal to 4096
points is a common value. Np and N1 are used interchangeably. N1 must be
equal to an integer power of two. Delbeta or delK are the step size in
complex K space. In the program Delbeta and DelK are used
interchangeably. Delbeta also depends on the maximum horizontal distance
desired and also on the maximum Beta allowed. This maximum Beta is very
near to omega divided by the speed of sound. Beta and K are used

interchangeably in the program and thesis.
Region: Subroutine used to determine which of 8 diffferent forms of

the general solution are to be used. The selection depends on how the

waves are interferring at that particular value of K. Region calls to
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subroutine g32all to identify if the complex part of g3’2 has changed sign.
The sign change indicates a different set of rays are combining to form the

solution. With each set of rays a different form of the solution is required.

Hall: Subroutine to calculate the Hankel functions Hy and H, and their

derivatives in terms of the Airy functions, Al and BI. Hall calls to Cgbair

to get the Airy functions needed.

Hall2: Subroutine to calculate only the Hankel functions.

Cgbair: Subroutine to calculate the Airy functions. Cgbair uses either
an asymptotic or a small argument approximation of Al and Bl depending on

the value ofcomplex K.

Gzalll: Subroutine to calculate the derivatives of the g3’ 2 function.

These values are used to compute the reflection coefficients.
Gall: Calculates the g function needed to calculate the g3/2 function.
Dafb2: Subroutine modified from Attenborough and Richards to

calculate the inverse Hankel transform using fast Fourier transforms.

Dafb2 calls to subroutine Zeta to calculate the terms representing the
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extension of the integral to infinity and to subroutine Fork used to perform

the actual fast Fourier transform.

Zeta: Subroutine to compute the value of the integral to infinity.

Fork: An efficient fast Fourier transform taken from Attenborough

and Richards program.

VARIABLES

Beta: Used interchangeably with K, both are the complex argument of

the transformed solution.

Tau: The term t used in the reflection coefficients developed by Van

Moorhem.

Sci: The term y used in the reflection coefficient developed by Van

Moorhem.

Rp: The actual reflection coefficient.

R4: The modified reflection coefficient representing refraction.
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En: The complex argument of the Hankel function. En is a function of

K (or Beta) and the height of the source or receiver, whichever applies.

Rlemda: The ratio of omega to speed times alpha. The reciprocal of

the wave number.

Zimped: The complex impedance of the ground normalized by the speed

of sound and the density.

Z2 and Z3: Heights of the receiver and source, respectively.

Gbar (K) or Gbar(Beta): The sampled function to be inverted.

Gbar (r): The inverted solution. The real space answer.

G: The sound pressure level result.

Rad: The horizontal distance of the present (Gbar (r)

Rad2: The logarithm of Rad.
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HELPFUL NOTES

1. All units used here are examples only. The only requirement in
operation is to use a consistent set of units.

2. The output of sound pressure level and horizontal distance along
with an echo of input parameters is written to file FOR044.dat in the
present diretory. |

3. To plot the result at the University of Utah Mechanical Engineering
Vax system type RUN PLOTPROMPT and the rest is interactive.

4. Basic instructions for use on the University of Utah Mechanical
Engineering Vax system are:

a. Log on using normal sequency of user name and password.

b. Type @Q to link all necessary files together. Instead of combining
all files into a large file several small trackable files are used for ease of
editing.

c. Type RUN FFTPRESS to begin execution.

d. Input the variables as requested by subroutine input.

e. Atcompletion FFTPRESS will display FINALLY FINISHED. To plot the
results type RUN PLOTPROMPT. This is a standard plotting program that
uses the system subroutine Mgraph. The data file name is FOR044.DAT.
The data file contains 2 columns. The fist column of the data is the
logarithm of the horizontal distance. The second column of the data is the

sound pressure level. 15 lines are used at the beginning of FORC44.DAT to
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echo the input parameters, therefore tell PLOTPRMPT to begin accepting
data at line sixteen of file FOR044.DAT. The plot will display on graphics
terminals only. Mgraph asks if a hard copy is desired when crt plotting is
finished. PLOTPROMT has autoscaling capability that can be turned on or
off and offers many other self instructing options. Mgraph creates files
named HPPLOT.HPL, however, it is recommended to change the name as soon
as possible to avoid deletion of previous plots. If a hard copy plot is
desired after exiting PLOTPROMT type PLOT then the file name.

f. Log off with command LO.
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PROGRAM FFTPRESS

C S I 3 S0 S S J3E 3636 3 3633 3t 96 96 3 36 3 3 36 3 33 FIEI-0 6 H3 3 FIt T I 3

C MAIN ROUTINE TO DEVELOPE THE GBAR(b,Z) TO EE INVERTED *
C THE MAIN WILL INPUT THE NECESSARY CONSTANTS,CALCULATE BETA, *
C SELECT FORM OF SOLUTION CALL THE SUEROUTINES AND COMPUTE RO,TAU,
C SCI,g,THE HANKEL FUNCTIONS AND FINALLY CALCULATE GBAR(b,Z). *
c I 2 a2 s zadzianasna sl o s szt e 2R S8 FRE TR
C SUBROUTINES:

G32ALL: FINDS THE FUNCTION g*3/2(v,2) USED TO DETERMINE

WHICH REGION OF SPACE PRESENT BETA IS IN.
REGION: GIVEN g“3/2 DETERMINES WHICH REGION OF
: SPACE PRESENT BETA IS IN.
GZALL: FINDS gz(%,2)=dg/dZ AND THE OTHER DERIVATIVES

USED TO FIND K,TAU,SCI. ALSO RETURNS ETA(b,2Z)
THAT IS .USED A3 THE ARGUMENT FOR HANKEL
FUNCTIONS. GZALL CALIS TO GALL TO GET g.

GALL: CALCULATES -g FUNCTION.

HALL: CALCULATES THE HANKEL FUNCTIONS FROM AIRY
FUNCTIONS. CALLS CGBAIR TO GET AIRY FUNCTIONS

HALL2: CALCULATES ONLY THE HANKEL FUNCTIONS NOT THE
DERIVATIVES AS HALL DOES. CALLS CGBAIR ALSO.

DAFB2: GIVEN GBAR(Db,Z) USES METHOD DEVELOPED BY

RICHARPS AND ATTENBOROUGH TO PERFORM THE
HANKEL INVERSION. USES SUBROUTINES ZETA,FORK.
DAFB2 MAKES SEVFRAL CORRECTIONS TO A GENERAL
FFT. THE STANDARD CODE IS TAKEN FROM RICHARDS
AND ATTENBOROUGH PROGRAM.

ZETA: FORMS THE SUM OF ME TERMS WHICH APPROXIMATES
GBAR(b,Z) TO INFINITY IN THE BETA SPACE.

PORK: A VERY FAST FFT USED TO PERFORM ACTUAL
INVERSION OF GBAR(b,Z) FROM THE BETA SPACE.

INPUTS:
TINF: THE TEMPERATURE AT VERY LARGE Z
DTOT: THE DELTA_T/ T PARAMETER REPRESENTING THE
. 4 . TEMPERATURE GRADIENT.

ALPHA: PARAMETER USED IN DEFINITION OF TEMPERATURE
GRADIENT.

SPEED: SPEED OF SOUND AT T(INF).

OMEGA: FREQUENCY OF SOUND IN RADIANS/SEC.

Z: FIXED DISTANCE TO THE OBSERVER Z2 IN PROGRAM.

S: FIXED DISTANCE TO THE SOURCE Z3 IN PROGRAM.

SPLREF: REFERENCE SOUND PRESSURE LEVEL USED TO COMPUTE
THE SOURCE STRENGH Q.

RESISTANCE: GROUND RESISTANCE IN THE CHESSELL MODEL.

ALP: THE TERM USED TO INTEGRATE OFF REAL BETA AXIS.

NS: PARAMETER IN THE ANALYTICAL FUNCTION IN DAFB2.

ME: PARAMETER TO PRODUCE SUM TO INFINITY IN DAFB2.

Ni: SIZE OF ARRAY TO BE INVERTED.

DELBETA: STEP SIZE USED FOR BETA ALSO DELK IN DAFB2.

XNl rEe oo R oo ReRo N oo N oo Ko R o N o R o o R R e o N o N o R o X o R o X X2 X o X2 e X2 R N2 R Re No Ra R N R e

3
2

K AND BETA AND DELK AND DELBETA ARE USED INTERCHANGEABLY
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VARIABLES:
BETA: INDEPENDENT VARIABLE IN TRANSFORMED SPACE.
TAU: TAU DEFINED IN PAPER BY VAN MOORHEM.
SCI: SCI DEFINED IN PAPER BY VAN MOORHEM.
RO: RO CONSTANT DEFINED IN VAN MOORHEM.
R1: R1 CONSTANT DEFINED IN VAN MOORHEM.
EN: HANKEL FUNCTION ARGUMENT.
RLEMDA: OMBEGA/ (ALPHA*SPEED).
BRO: BRANCH CUTS IN THE BETA SPACE ASSOCIATED WITH
ERZ: THE SQUARE ROOT AND 3/2 POWER FUNCTIONS
BRS: IN g AND g THREE HAYF.
BRW: BRANCH CUR AT OMEGA/SPEED.
ZIMPED: GROUND IMPEDENCE NORMALIZED BY DENSITY AND SPEED.
GZ: dg/dZ FROM GZALL1.
GZZ: d2g/dz2 FROM GZALLA.
OTHER DERIVATIVES PER THIS NOTAPION
21: REFERENCE DISTANCE 0.0.
72: Z AS ABOVE.
23: S AS ABOVE.

FEFHIHI I I I FH I I I I I T I HHHIITIEIII I X NI HHIH

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

INTEGER IREGION K

COMMON /INTEG/ NS,ME,N1

COMMON /AFB2IN/ ALP,DELBETA _

COMMON /CONSTANT1/ SPEED,OMEGA

COMMON /CONSTANT2/ ALPHA,DTOT

COMMON /CONSTANT?3/RLEMDA, Q

COMMON /CONSTANT4/CMPI,CK,RO,R!

COMMON /HEIGHT/ 21,22,23

COMMON /CETA/Z1EN,Z2EN,Z3EN

COMMON /BRANCH/BRO, BRS, BRZ , BRW

COMPLEX*16 BETA,GZ,GZZ

COMPLEX*16 H2,H21

COMPLEX*16 EN,Z1EN,Z2EN,Z3EN

COMPIEX*16 -H1,H11

COMPLEX*16 CK,TAU,SCI,ZIMPED

COMPLEX*16 DUM1,DUM2,RO,R1,CMPI

COMPLEX*16 GBAR(32768)

CALL INPUT(TINF,SPLREF,RESISTANCE)

Q=.00002%4 . *3.1415926%4 . 67DO* (10. **(SPLREF/20.D0))

SPEED=DSQRT (1 . 4D0*287 . DO*TINF)

PRINT *,'THE POLLOWING IS AN ECHO OF THE INPUT '

PRINT *,'IN THE FOLLOWING ORDER ALP DELTA ME NP DELBETA'

PRINT *,'SPEED OMBEGA ALPHA DTOT Z1 Z2 23 RESISTANCE'

PRINT *, 'TINF, SPLREF'

PRINT *,' ' ! SKIP A LINE

PRINT *,'THESE VALUES ARE ALSO WRITTEN T0 FILE 44°

PRINT *,ALP,NS,ME,N1,DELBETA, SPEED, OMEGA, ALPHA , DTOT

PRINT *,21,22,%23,RESISTANCE, TINF, SPLREF

WRITE(44,*) 'ECHO OF INPUT ALP NS ME DELBETA SPEED OMEGA ALPHA
& DTOT Z1 22 23 RESISTANCE TINF SPLREF'
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WRITE(44,*) ALP,NS,ME,N1,DELBETA,TINF,SPLREF,OMEGA,ALPHA,
& DT0OT,21,22,23, R}BISTANCE Q, SPEED

RLB{DA—OBH-I}A/(SPEED*ALPHA)

PI=3.1415926

CMP1=(0.0,1.D0)

C FUNCTIONS TO COMPUTE THE COMPLEX IMPEDENCE FROM CHESSELL MODEL
FR=OMEGA/2.DO/PI Y
RATIO=FR/RESISTANCE oy
R=1.+9.08DO*RATIO**(-.75DO)
X=-11.9DO*RATIO**(-.T3D0)
2IMPED=DCMPILX (R, X)
BRO—OMBGA/SPEED*DSQRTU DO/(1.DO \ ALPHA*Z1+DTOT))
BRZ=OMEGA /SPEED*DSQRT( (1 . DO+ALPHA*Z2) /(1 . DO+ALPHA*Z2+DTOT) )
BRS-OMFBA/SPEED*DSQRT(U DO+ALPHA*Z3) /(1 . DO+ALPHA*Z3+DTOT) )
BRW=OMEGA /SPEED
PRINT *,' '

PRINT * "o -' [ 4
PRINT* 'THEBRANCHCUTSARE' BROBRZBRsmw
wRITE(44 #) 'THE BRANCH CUTS ARE' ERO, BRZ, BRS, BRW
DO 1,I=1,N1
BETA=DCMPLX ( DFLOAT(I-1), (~ALP) ) *(DELBETA)
IF (ABS(BETA) .LE. .00000001) THEN
BETA=DCMPLX ( , 0000001DO, (~ALP) ) *DELBETA
END IF
CALL GZALL1(Z1,BETA,GZ,G2Z,EN)
21 EN=EN
DUM1=GZ
DUM2=GZZ &
CALL GZALL1(22,BETA,GZ,G2Z,EN)
Z2EN=EN
CK=Q/12.DO/CMPI /(RLEMDA**(2.DO/3.D0) ) *1.0/(CDSQRT(GZ))
CALL GZALL1(Z3,BETA,GZ,GZZ,EN)
Z3EN=EN
CK=CK*1.DO/(CDSQRT(GZ))
TAU=ALPHA*RLEMDA-CMPI /2. DO*Z IMPED*DUM2 /DUM1
SCI= IMPED*( (3. /2.)**(2.D0/3.D0) ) *( (RLEMDA )**(2.D0/3.DO) ) *DUM'
CALL HALL(Z1EN,H2,H21,H1,H11)
DUM1 =TAU*H1 +CMPI#SCI#*H1
DUM2=TAU*H2+CMPI #3CI *#H21
RO=-DUM1 /DUM2
DUM1 =CMPI*PI/6.DO " -
R1=(CDEXP(-DUM1 )*(CMPI*RO))/( (CDEXP(DUM! )**2.DO)+(RO**2.D0) )
CALL REGION(BETA, IRBGION)
Go T0(10,20,30,40,50,60,70,80), IREGION
C wxsxxxsxds REGION 1 BEGINS HERE FOR Z2>Z3 OR 2Z0S #%dkssssss
10 CONTINUE
CALL HALL2(Z3EN,H2,H1)
DUM1 =H1+RO*H2
CALL HALL2(Z2EN,H2,H1)
GBAR (I ) =CK*H2#DUM1
GOTO 500
C *xxx%xxx#% REGION 2 BEGINS HERE FOR Z2>Z3 OR Z>S sHewssiixss
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20 CONTINUE
CALL HALL2(Z3EN,H2,H1)
DUM1 =H1+R1%*H2
CALL HALL2(Z2EN,H2,H1)
GBAR( I ) =CK*H2*DUM?
GOTO 500
wExka0eee REGION 3 BEGINS HERE FOR 22>23 OR 2>S
30 CONTINUE
CALL HALL2(Z3EN,H2,Ht)
DUM1 = (H1 +RO*H2)*R1 ‘CDE)CP(CMPI*PI/} DO)
CALL HALL2(22EN,H2,H1)
GBAR(I)=CI\*H2*DUM1
GOTO 500
#EH0HH REGION 4 Bmms Hm.E FOR 22523 OR 2>S
40 CONTINUE
CALL HALL2(Z3EN,H2 H1)
DUM1 =CDEXP( I*PI/} ‘DO ) *R1 *(H1 +RO*H2)
CALL HALL2(Z2EN,H2,H1)

3 IR

FEEEHEH

GBAR(I )=CK*DUM{ *(H2+(CDEX'.P(CMPI*PI/3 DO)*H1))

GOTO 500
#xxxxx0e0% REGION 5 BEGINS HERE FOR 22<Z3 OR 2<S
50  CONTINUE

CALL HALL2(Z2EN,H2,Ht)
DUMi=H1+RO*HZ" -
CALL BALL2(Z3EN,H2,H1)
GBAR(I )=CK*E2*DUMf
GOTO 500
sxxxxx00t REGION & BEGINS HERE FOR 22<Z3 OR 2<S
60  CONTINUE ,
CALL HALL2(Z2EN,H2,H1)
DUM1 =H1 +R1 #H2
CALL HALL?2(Z3EN,H2,H1)
GBAR (I ) =CK*H2*DUM
GOTO 500
xxxxxxxxer  REGION 7 BEGINS HERE FOR Z2<Z3 OR 2<S
70 CONTIWUE ...
DUM1 =CDEXP(CMPI*PI /3.D0)*R!
CALL HALL2(Z2EN,H2,H1)
DUM1=DUM1 * (H1+RO*H2)
CALL HALI2(Z3EN,H2,H1)
GRAR (1) =CK*H2*DUM1
GOTO 500
sxx#xxsbr REGION 8 BEGINS HERE FOR Z2<Z3 OR Z<S
80  CONTINUE
DUM1 =CDEXP (CMPI #P1 /3. DO)*Ri
CALL HALL2(Z2EN,H2,H1)
DUM1 =DUM1 *(H1+RO*H2)
CALL HALL2(Z3EN,H2,H1)
GBAR(I )=CK*(H1 *CDEXP(CMPI*P1 /3. DO)+H2)*DUM1
GOTO 500

FHEIHI I

I3 3¢

iz aaas s ol

I3 3 96 38 o I

END OF GBAR(BETA) CALCULATIONS BASED ON REGIONS DETERMINED
MULTIPLY BY BETA ONLY TO MATCH VAN MOORHEM DEFINITION TO
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c RICHARDS AND ATTENBOROUGH.
500 CONTINUE
GBAR(I)=GBAR(I )*BETA
1 CONTINUE
PRINT *,' LAST BETA EXCUTED IS',BETA
CALL DAFB2(GBAR)
DO 2,I=1,N1/2
RAD=2. DO*PI*DFLOAT( I-1 ) /(DFLOAT (N1 ) *DELEETA )
IF(RAD.1E.0.O ) THEN
GOTO 5
END IF
RAD2=DLOG10(RAD)
G=20. D0*DI.OG10(ABS(GBAR(I)))
WRITE(44,9093) RAD2,G
S  CONTINUE .
2  CONTINUE
PRINT * 'FINALLY FINISHED
9093 PORMAT(SX 3G18. 8)
STOP
END

QOO0

-

SUBROUTINE INPUT(TINF,SPLREF,RESISTANCE)
(33 S J I IO HHHHHHHHHHEHHHHHH
C THE PURPOSE OF THIS ROUTINE IS TO INPUT ALL NECESSARY PARAMETERS TO *
C THE MAIN ROUTINE. THE DEFINITION OF EACH PARAMETER WILL BE DEFINED *

C AT ITS RESPECTIVE INPUT. *
(0.0 3336 93 96 J TN HIICIEIII FHEF 333 T3 I 36 I FI AT FII3 3 J I3 I I T3 36 I
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /INTEG/ NS,ME,N!
COMMON /AFB2IN/ A.LP DELBETA
COMMON /CONSTANT1 / SPEED OMEGA
COMMON /CONSTANT2/ ALPHA,DTOT
COMMOR /CONSTANT3/ RIB'TDA Q
COMMON /CONSTANT4/ CMPI, CK RO, R1
COMMON /HEIGHT/ 21,22, Z3
COMMON /CETA/ Z1EN, ZZB‘I Z3EN
COMMON /BRANCH/ BRO,BRS,BRZ,BRW
WRITE (6,899)
WRITE(6,900)
READ *, TINF
WRITE (6,901)
READ *, DTOT
WRITE (6,902)
READ *, ALPHA
WRITE (6,903)
READ *#, SPLREF
WRITE (6,904)
READ *, OMEGA
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WRITE (6,905)
READ *, RESISTANCE
WRITE (6,906)
READ *, 22,23
21=0.D0

WRITE (6,899)
WRITE (6,907)

'READ*,ALP

=—ALP ! NECESSARY DUE TO PREVIOUS DEFINITION USED
WRITE (6 908)

WRITE (6,910) .

READ *, N

WRITE (6,911) -

READ *, DELBETA .

FORMAT('0", 20X, 18 .///////////////) ! CLEARS THE SCREEN

FORMAT('0", ///,10X, 36 THE FOLLOWING ARE PHYSICAL VARIABLES.
% ,12X,43H INPUT THE TEMPERATURE AT Z EQUAL INFINITY.

FORMAT (X,12X,45H INPUT THE TEMPERATURE CHANGE DELTA T/T(INF).
FORMAT ()'(,1) 2X,46H THPUT THE TEMPERATURE PROFILE CONSTANT ALPHA.
FORMAT (x/1) 2X,46H INPUT THE REFERENCE SOUND PRESSURE LEVEL.
FORMAT (x,/1) 2X,46H INPUT THE ANGULAR FREQUENCY IN RADIANS/SEC.
FORMAT (x/1) 2X,47H INPUT THE CHESSELL MODEL FLOW RESISTANCE (cgs)
FORMAT (x/1) 2X,46H INPUT RECEIVER AND SOURCE HEIGHTS SEPARATED

,/,25H BY A COMMA.,/)

FORMAT /// 10X,37H THE FOLLOWING ARE NUMERIC VARIABLES.
,//,12X 39H INPUT ALP. THE IMAGINARY PART OF RETA.

»/,12X,43H NOTE POSITIVE VALUES ARE ABOVE THE AXIS. ,/)
FORMA‘&‘ (X, 12X 46H INPUT THE DELTA PARAMETER USED IN INTEGRATION

)
FORMAT (X,12X,46H INPUT THE NUMBER OF TERMS IN SUM TO INFINITY.
FORMAT ()'{,/12X,46H INPUT THE NUMBER OF POINTS TO BE USED.
/)
FORMAT (X,12X,46H INPUT THE STEP SIZE IN BETA (OR K) SPACE.

RETURN
END

SUBROUTINE REGION(BETA,IREGION)

C 33 300960 36 36 336 336 3036 33633 363 636 36 36 3 36 36 36 3696 36 36 3 36 96 36 36 JI HIE I 3636 306 9636 36 JIEI 1636 36 36 96 1636 96 33
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C SUBROUTINE TO DETERMINE WHICH OF 8 REGIONS .

C

THE EVALUATION IS TO TAKE PLACE IN. »

(C 3 S0 B3 3003 3 33 363 3 NI JHHE IS S I 0 IR 33 3 3 S 3 S S I S

QOO0

(@]

IMPLICIT DOUBLE PRECISION (A-H,0-2)
INTEGER DOUBLE PRECISION Ki
COMPLEX*16 BETA,G32C1,G32C2,G32C3
COMPLEX*1 6 G32PI,G32PI12,G32PI3
COMMON /INTEG/NS,ME,Nt
COMMON /mzm/m DELRETA
COMMON /CONSTANT4 /SPEED OMEGA
COMMON /CONSTANT2/ALPHA,DTOT .
COMMON /CONSTANTB/RIEMDA Q
COMMON /CONSTANT4/CMPI,CK,RO, m
COMMON /HEIGHT/ Z1,22,%23 -
COMMON /CETA/ZtEN, ZomN , Z3EN
COMMON /BRANCH/BRO,BRS BRZ, mw
INTEGER IREGION ¢

CALL G32ALL(Z1,BETA,G32C1)

CALL G32AIL(Z2,BE'IA,GB2CZ)

CALL GBZALL(ZB,BETA,G3203)

IN THE EVENT THAT BRZ OR BRS AND BRW ARE VERY CLOSE THE FOLLOWING
IS USED TO INSURE PROPER REGION IS CHOSEN. Wi AND W2 ARE SIMPLE
WEIGHT FACTORS TO. DETERMINE WHICH DIRECTION TO EVALUATE RBEGIONS.
BY WEIGHTING THE SELECTION DEPENDING HOW CLOSE BETA IS TO BRW
THE REGIONS ARE FOUND IN THE REVERSE ORDER.

POSMAX=MAX(Z22,23)
wWi=1.0
w2=1.0
DUD=OMEGA /SPEER

3

DUD=DUD*W1+DUD*W2*DSQRT ( (1 . O+ALPHA*POSMAX ) / ( 1 +ALPHA *POSMAX+DTOT) )

DUD=DUD/2
IF(Z22.17.23) THEN
GOTO 120

END IF

FOR **(Z2 ;3 OR Z>S)** THE FOLLOWING IDENTIFY REGIONS OF SPACE

ATI1=DIMAG(G32C1 )
AI2=DIMAG(G32C3)
AI3=DIMAG(G32C2)
IF(REAL(BETA).GT.DUD) THEN
GOTO 110
END IF
IF(AI3.GT.0.0) THEN
IREGION=4
GOTO 150
END IF
IF(AI2.GT.0.0) THEN
IRBGION=3
GOTO 150
END IF
IF(AI1.GT.0.0) THEN
IREGION=2



GOTO 150
END IF
IREGION=1
GOTO 150
110 CONTINUE
IF(AI1.17.0.0) THEN
JTREGION=1
GOTO 150
END IF
IF(AI2.1T7.0.0) THEN
IRBEGION=2
GOTO 150
END IF
IF(AI3.1T.0. O) THEN
IREGION=3 .o
GOTO 150 :
END IF Dy
IREGION=4 *
GOTO 150 .
C FOR**(Z2<23 (R Z<S)*‘* 'I!HE FOLLOWING IDE‘ITIFY REGIONS OF SPACE
120 CONTINUE
AI1=DIMAG(G32C1)
AI2=DIMAG(G32C2)
AI3=DIMAG(G32C3) .
IF (REAL(BETA).GT. DUD) THEN
GOTO 130 -
END IF

IF (AI3.GT.O. O') THEN
IREGION=8 o

GOTO 150

END IF

IF (AI2.GT.0.0) THEN
IREGION=7

GOTO 150

P&
IF “(A11.GT:0.0) THEN
TREGION=6
GOTO 150
END IF
IREGION=5
GOTO 150
130  CONTINUE
IF (AI1.LT.0.0) THEN
IREGION=5
GOTO 150
END IF
IF (AI2.LT.0.0) THEN
IREGION=6
GOTO 150
END IF
IF (AI3.LT.0.0) THEN
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IREGION=7

GOTO 150

END IF

IREGION=8

GOTO 150

150 CONTINUE

RETURN

END
C
C
C
C ) i

SUBROUTINE G32ALL(Z,BETA,G32C)
CWHWHW
C* . q C »
Cc* G32ALL ‘CALCULATES g3/2 FUNCTION *
C* ‘ N *
c* ' *

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMPLEX*16 BETA,PHI,SQRT1,SQRT2,F00,G32C,MODLOG
COMPLEX*16 S1,A,B,S

COMMON /CONSTANT1 /SPEED, OMEGA

COMMON /CONSTANT2/ALPHA,DTOT

COMMON /BRANCH/BRO, BRS,BRZ, BRW

AA=1 .+ALPHA*Z+DTOT

B=1.-{ (SPEED*BETA/OMEGA )*( SPEED*BETA /OMEGA ) )
S1=SQRT1 (BETA,Z) :

S=SQRT2(BETA)
PHI=S1/(S*DSQRT(AA))
IF(DTOT.EQ..0.OR.CDABS(1 .~PHI ).LT.1D-8) THEN
FO0=.0
ELSE
FOO-MODLOG(U +PHI)/(1.-PHI))
ENDIF
G32C=§SQRT (AA )*S1-.5*DTOT*F00/S
RETURN
END
C
C ,
C BEGIN OF FUNCTIONS USED ABOVE.
g JH 9 JE I F3 I HH 30 FIE 6 346 3 3 936 36 3 3 3 36 JIE 96 3 3 96 336 I I3 36 I I % 3 I3 B I I I N 3
C SQRT1 AND SQRT2 ARE FUNCTIONS TO CALCULATE SQRT(BETA) GIVEN *
C DESIRED BRANCH CUTS AND DIRECTION +IMAGINARY OR ~IMAGINARY. *

C 3633696 3 33 3 90 3 JIE 6363 3 96 0 3 36 I FEIIE 36 363 343 HE 3 I3 3 HIEIHIEIE I 3 3696 3-36JEI-JE0E 36 9 33 3 6 -3

FUNCTION SQRT1(BETA,2)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMPLEX*16 BETA,AA,SQRT1

COMMON /CONSTANT1 /SPEED OMEGA

COMMON /CONSTANT2/ALPHA, DTOT

M=t .-(( (SPEED/OMH}A)*BETA)*( (SPEED/OMEGA )*BETA) )
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BB=1.+ALPHA*Z+DTOT

BRAN1=(OMEGA/SPEED ) *DSQRT ( (1 . +ALPHA*Z) /(1 . +ALPHA*Z+DTOT) )

IF ((DREAL(BETA) .GE. BRAN1) .AND.
(DIMAG(BETA) .IE. 0.0)) THEN
SQRT1 =-CDSQRT ( AA*BB-DTOT)
ELSE
SQRT1 =CDSQRT (AA*BB-DTOT)
END IF
RETURN
END

:

FUNCTION scmz(BErA)

IMPLICIT DOUBLE PRECISION (A-H, o-z)

COMPLEX*16 BETA,A),SQRT2

COMMON /BRANCH/ O,BRS,BRZ,BRW

COMMON /CONSTANT1 /SPEED, OMEGA

COMMON /CONSTANT2/ALPHA,DTOT
AA=1.-(((SPEED/OMEGA ) *BETA )*( (SPEED/OMEGA ) *BETA ) )
IF ((DREAL(BETA) .GE. ERW) .AND.

1 (DIMAG(BETA) .IE..0)) THEN

SQRT2=-CDSQRT (AA)

SORTZ:CDSQF\’T(AA)
END IF
RETURN
END

-

C #6300 3333 333036 H3 3 36 F63 36 03 3 3 36 J030 6300 3636 2006 36 FITE 3 FI 3 3363 9 I I I FII RN F

C FUNCTION -MQPLOG COMPUTES THE LOG OF BETA GIVEN DIRECTION AND

C LOCATION OF BRANCH CUTS.
C 3OO IO IO OO RO HHHEHOEHHR

C
C

1

FUNCTION MODLOG(QUAN)

IMPLICIT DQUBLE PRECISION (A-H,0-Z)

COMPLEX*16 QUAN,MODLOG

F ((DREAL(QUAN) .LE. 0.0) .AND. (DIMAG(QUAN)
.GE. 0.0)) THEN
MODLOG=CDLOG (QUAN )+DCMPLX (0.0, -2%3.1415927)

ELSE
MODLOG=CDLOG ( QUAN)

END IF

RETURN

END

C END OF FUNCTIONS USED ABOVE.

C
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SUBROUTINE BALL(Z,H2,H21,H1,H11)
C%m*mm&*mmmmmﬂim
C HALL USES SUBROUTINE CGBAIR TO CALCULATE 1/3 ORDER *
C HANKEL FUNCTIONS FROM AIRY FUNCTIONS. °
CMHH****HM*W%%MHWMM

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMPLEX*16 Z,AI,BI,AIP,BIP,K,KS,Hi, H2,H11,H21

COMPLEX*16 ARG,CI

CI= DCMPLX(0.DO,1.DO)

PI= 3.141592654D0

ARG= DCMPLX(0.DO,-PI1/6.DO) :

K= (12.D0)**(4. DO/6 DO‘)*CDE)CP(ARG)

KS= DCONJG(K) *

CALL CGRAIR(-Z, AI,BI,AIP,BIP)

Hi= K*(AI—CI*BI) '

H2= KS*(AI+CI*BI), ¢

Hi1= -K*(AIP-CI*BIP)

H21= -KS*(AIP+CI*BIP)"

RETURN

END

-

SUBROUTINE CGBAIR(Z,AI,BI,AIP,BIP)
I IO SOOI HEHEHHHHOH

THEN USE BEQS. 10.4.2 THRU 10.4.5 FOR AI,BI,AIP,BIP
10 ELSE IF ARG(Z) LT P1/3
THEN CALCULATE ZETA(Z)
USE BQS¢ 10.4.59, 10.4.61, 10.4.63, 10.4.66 FOR Al,BI,AIP,BIP*
20 ELSE CAICULATE ZETA(-2Z) *
USE EQS. 10.4.60, 10.4.62, 10.4.64, 10.4.67 FOR AI,BI,AIP,BIP*
ENDIF °
ENDIF *
EXIT *
END *
S0 396 36 2 3 36 9 3 3 3 3 H 3N I 3 3 X I K W W3 5 I I F I I I T HIE I KA I HHIE %
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMPLEX*16 Z,Al,BI,AIP,BIP,ZETA,CZETA,Z14,SUM1,SUM2,SUM3, SUM4,
1 ZETAP,FACT1,FACT2, SN, CS, FTERM, FPTERM, GTERM, GPTERM, F,FP,G,GP, 23
COMPLEX*16 VZETA,VZETAP
DIMENSION C(21), D(21)
DATA C1,C2,PIRT, PI4/.3550280539D0, . 2583194038D0, 1 . T72453851D0,
+ 785398163500/
DATA C/1.DO, .0694444444444441D0,
+ .037133487654321D0, .0379930591 2780000,

CALCULATE AIRY FUNCTIONS FOR COMPLEX*16 ARGUMENT *
REF. HANDBOOK OF MATHE“IATICAL FUNCTIONS, ABRAMOWITZ AND STEGUN. *
ENTRY: ]
CALCULATE ARGUMH‘I'“(Z) AND ABSOLUTE VALUE(Z) *
IF /2/ 1T 6 *

*

*

*

oRoNoXoNoRoRoNoReoRoRoNoRoRoNoRo Ke! aQOQn
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1 .057649190412669D0, . 11609906402551D0,
+ .29159139923074D0, . 87766636950998D0,
2 3.0794530301731D0, 12.341573332345D0,
+ 55.622785365914D0, 278. 46508077759D0,
3 1533.1694320127D0, 9207 . 2065997258D0,
+ 59892.513565875D0, 419524.87511653DO,
4 3148257.4178666D0,25198919.871601D0,
+ 214288036.96366D0, 1929375549. 1823D0,
5 18335766937.839D0/
DATA D/1.DO,
+ -.097222222222221D0, -. 0438850308641 97D0, - . 04246 2830789894 D0,
1 -.062662163492031D0, -. 124105896027 , =+ 30825376490107D0,
2 -.92047999241291D0, -3.2104935846485D0, -12.807293080735D0,
3 -57.508303513911D0, -287.03323710920D0, 1576 . 357303337000,
4 -9446.3548230953D0, -61335. 70666384 TD0, -428952 . 4004000410,
5 =3214536.5214006D0, -25697908. 383909D0, ~-218293420.83214D0,
6 -1963523788. 9909D0,r1 8643931088. 105D0/
ABSZ=ABS(Z)
TF(ABSZ.EQ.0) GO 10 3.
IF(ABS(DIMAG(Z)).LE.1.D-12.AND. DREAL(Z) 1r.0.DO) GO T0 5
ARGZ=ATAN2 (DIMAG(Z),DREAL(Z))
GO TO 4
ARGZ=0.DO
GO T0 4
ARGZ=3.141 5926535898D0
CONTINUE -
IF(ABSZ.GT.6.DO) GO TO 10
ASCENDING SERIES
EQS. 10.4.2,10.3. 3
CONTINUE 3
23=7%*3
FTERM=1.D0
FPTERM=2*Z/2.DO
GTERM=2
GPTERM=1.DO .
GLIM=1,D-13*ABSZ
P-FTERM
FP=FPTERM
G=GTERM
GP=GPTERM
KKKT=100 ~ ! ADJUST KKKT TO INSURE CONVERGENCE IF NECESSARY
DO 1 I=1,KKKT
13=3+%]
FTERM=FTERM*Z23/((13-1.D0)*I3)
FPTERM=FPTERM*Z3/(13*(13+2.D0))
GTERM=GTERM*23/(13*(13+1.D0))
GPTERM=GPTERM#*23/((13-2.D0)*13)
F=F+FTERM
FP=FP+FPTERM
G=G+GTERM
GP=GP+GPTERM
IF(ABS(GTERM) .LE.GLIM) GO TO 2

89



QOO

aaoaQa

10

"

CONTINUE
PRINT 6000, 2

FORMAT(/' 2='2E14.5,' ERROR IN CGBAIR, NONCONVERGENCE')
Al=C1 *F-C2%G

AIP=C1*FP-C2*GP

BI=1.T732050808D0*(C1*F+C2%G)

BIP=1.732050808D0*(C1 *FP+C2*GP)

GO TO 9999

ASYMPTOTIC EXPANSIONS FOR /Z/ LARGE

SIGN=1.D0

SUM1=0.D0

SUM2=0.D0

SUM3=0.D0 . «
SUM4=0.DO0 o
PIBY3=3.141 5926DO/3 DO .-
IF(ABS(ARGZ).GE: PIBY3) GO TO 20
/ARG(Z)/ 1E P1/3

BEQS. 10.4.59, 10. 4 61 10.4.63, 10.4.66

ZETA=CZETA(ABSZ, ARGZ)

DO 11 I=1,12

K=I-1

ZETAP=2ETA%*K

SUM1 =SUM1+SIGN*C(I) /ZETAP
SUM2=SUM2+SIGN*D(1)/ZETAP
SUM3=SUM3+C (1) /ZETAP -
SUM4=SUM4+D(1 ) /ZETAP

SIGN=-SIGN

Z14=ABSZ**, 25DO‘DCMPLX(COS(ARGZ/4 DO),SIN(ARGZ/4.D0))
FACT! =.5DO*EXP (=ZETA) /( PIRT*Z14)
PACT2=.5DO*EXP (~ZETA)*Z214 /PIRT
AI=FACT1 *SUM1

AIP=-FACT2#*SUM2
FACT1=EXP(ZETA)/(PIRT*Z14)
FACT2=EXP(ZETA )*Z14 /PIRT

BI=FACT1 *SUM3

BIP=FACT2*SUM4

GO T0 9999

/ARG(Z)/ GT PI/3 NOTE CHANGE ABOVE
BQS. 10.4.60, 10.4.62, 10.4.64, 10.4.67

CONTINUE
ARGZ=ATAN2(~-DIMAG(Z),-DREAL(Z))
72ETA=CZETA(ABSZ,ARGZ)
VZETA=1.DO/ZETA
LIL=10
DO 21 I=1,LLL
K2=(I-1)%*2
J=K2+1
VZETAP=VZETA**K2
SUM1 =SUM1 +SIGN*C(J ) *VZETAP
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SUM2=SUM2+(SIGN*C(J+1 )*VZETAP*VZETA )
SUM3=SUM3+(SIGN*D(J ) *VZETAP)
SUM4=SUM4+(SIGN*D(J+1 )*VZETAP*VZETA)

21  SIGN=-SIGN
Z14=ABSZ **.25DO*DCMPLX (COS (ARGZ/4.DO) , SIN(ARGZ/4.D0) )
FACT1=1.DO/(PIRT*Z14)
FACT2=214/PIRT
SN=SIN(ZETA+PI4)
CS=COS(ZETA+PI4)
AI=FACT1 *(SN*SUM1 -CS*SUM2)
AIP=-FACT2*(CS*SUM3+SN*SUM4 )
BI=FACT1 *(CS*SUM1+SN*SUM2) SR §
BIP=FACT2*(SN*SUM3-CS*5UM4)

9999 E.m)REI‘UR’N .

. ‘\.‘ ’
BEGIN OF FUNCTIONS USED ABOVE

sXorEeNoNe!

FUNCTION CZETA(ABSZ,ARGZ)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMPLEX*16 CZETA '

ARG=ARGZ*1.5D0 ~ !

CZETA=(ABSZ**1.5D0)*DCMPLX(COS(ARG), SIN(ARG) ) *. 66666666666667DO
RETURN

END

s
-

END OF FUNCTIONS USED ABOVE.

SUBROUTINE GZALL1(Z,BETA,GZ,GZZ,EN)
R e e i i it L D T T———

GZALL1 CALCULATES ALL THE PARTIAL DERIVATIVES *
OF THE g ¥UNCTION. *
C ***i*{-*****H***i*W*mﬂ*********ﬂ*mﬂ*immﬂ
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
COMPLEX *16 BETA,GZ,GZZ,G,GB,GBEB,SQRT1,EN
COMMON /CONSTANT1 /SPEED, OMEGA
COMMON /CONSTANT2/ALPHA,DTOT
CALL GALL(Z,BETA,G)
A=1.+ALPHA*Z+DTOT
BRAN=OMEGA/SPEED*SQRT ( (A-DTOT) /A)
IF (DREAL(G).LE..Q.AND.DIMAG(G).GE.O.) THEN
SI=-1.
ELSE

Si=t.
ENDIF
GZ=SI*2.*ALPHA*SQRT1 (BETA,Z)/(3.*CDSQRT(G*A))
C=2.*ALPHA**3.DO*DTOT/(9*A**2.DO)
GZ2=C/(GZ*G)~.5*GZ**2.D0/G
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T=(3.*OMEGA/ (2. *ALPHA*SPEED) ) *#(2.D0/3.D0)
EN=T*G

RETURN

END

SUEROUTINE GALL(Z,BETA,G)
SHEHEHHHHHHE

GALL EVALUATES THE g FUNCTION *

L2 zaasasa sy .
IMPLICIT DOUBLE PRECISION (A-H,O-;)

COMPLEX *16 G,BETA,G32 .
COMMON /CONSTANT1 /SPEED; OMEGA -
COMMON /CONSTANT2/ALPHA,DTOT |
CALL G32ALL(Z,BETA «G32). "
G=CDEXP(2. /3. *CDI0G(G32))
RETURN A

END

aaa OO0

aaao

SUBROUTINE HALL2(Z,H2,H1)

3 3 I FHIEII I3 33 FAEIIINI IR Il T HHIE I
HALL2 USES SUBROUTINE CGBAIR TO CALCULATE 1/3 ORDER *
HANKEL FUNCTIONS FROM ATRY FUNCTIONS. NOT THE *
DERIVATIVES AS HALL DOES.

*

i
%
|

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMPLEX*16 2,AI,BI,AIP,BIP,K,KS,Ht,H2,H11,H21
COMPLEX*16 ARG,CI

COMPLEX*16 BETA

CI= DCMPLX(0.DQ,1.DO)

Pl= 3%1 592654D0

ARG= "DCMPLX (0. DO, -P1/6.D0)

K= (12.D0)**(1.D0/6.DO)*CDEXP(ARG)
KS= DCONJG(K)

CALL CGBAIR(-Z,AI,BI,AIP,BIP)

Hi= K*(AI-CI*BI)

H2= KS*(AI+CI*BI)

RETURN

END

QOO

SUBROUTINE DAFB2(F)

C K3 03 3003 303 6 33 3 363 30303 3036 36300 300 36336 3 36 30000 363 630 336 36 96 36 33 36 36 3 3 3 36 36 06 3033 3 30t

C SUBROUTINE TO ACCURATELY DO THE HANKEL TRANSFORM OF THE SOUND *
C  PRESSURE LEVEL. *
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C F(NP)=GBAR(NP) MUST BE SAMPLED AT NP POINTS WITH K=(N-1,ALP) *
C  ALP REPRESENTS THE DISTANCE ABOVE THE REAL AXIS THE FUNCTION WILL ®
C  BE INTEGRATED. °
C NS I? A)PARAMETER REPRESENTING ADDITION OF AN ANALYTICAL FUNCTION *
C TO F(NP .
C M IS THE NUMBER OF TERMS USED TO APPROXIMATE F(NP) T0 INFINITY *
(C 3 I I HCHHHHEHHHHEHOHE EHHHHHHEHHHEHHHHHH

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /INTEG/NS,ME,N1
COMMON/AFB2IN/ALP, DELBETA
comyg:x*m F(N1),CF,CARG, SUM, FNP, CMPI D1
NP=N "\
CMPI=DCMPLX (0. D9, 1.D0)
DELK=DELBETA ‘
PI=3.1415926D0 '
C SUBTRACT THE ANALYTICAL FUNCTION IF.NS > ZERO
C  ADJUSTING THE SUBTRAGTION MULTIPLIER CF
IF(NS.IE.Q) GOTO,!1
CF=DCMPLX (0.D0,0.D0) "
IF (ALP.FQ.0.0) THEN
CF=DFLOAT (NP) /DFLOAT (NS)
CF=CF*F(2)
END - IF '
IF (ALP.NE.0.OJ THEN
CP=CMPI *DFLOAT (NP)*F(1 ) /(DFLOAT (NS ) *ALP)
END IF
C  SUBIRACT THE ANALYTICAL FUNCTION IF NS>0
DO 10,I=1,NP «
D1 =DCMPLX (DFLOAT(I-1), (~-ALP))
CARG=DFLOAT (NS)*(-D1 ) /DFLOAT (NP)
F(1)=F(1)~-CF*(1.DO-CDEXP(CARG))
10 CONTINUE
11 CONTINUE
IF(ALP.EQ.0.0) F(1)=DCMPLX(0.DO,0.D0)
FNP=F(NP)
DO 12¢I=2,NP
D1 =DCMPLX(DFIDAT(I-—1 ), (=ALP))
F(I)=F(1)/(CDSQRT(D1))
12 CONTINUE
IF(ALP.NE.0.0) F(1)=F(1)/CDSQRT((—CMPI )*(ALP))
C ADD TERMS TO INFINITY IF ME>O
IF(ME.LT.1) GOTO 20
DO 15,1=1,NP
D1 =DCMPLX (DFLOAT(I-1), (-ALP))
CF=D{ /DFLOAT(NP)
CALL ZETA(NP,ME,CF,SUM)
F(I)=F(I)+FNP*SUM

15 CONTINUE
20 CONTINUE
C DO THE FFT

CALL FORK(NP,F,1)
C ADD ALTERNATE TERMS TO GIVE NP/2 SAMPLES TRANSFORMED
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CF=DELK*DFLOAT (NP )*(CDSQRT (~CMPI))/(2.DO*PI)
DO 25,1=2,NP/2
A=DEXP(DFLOAT (I-1)*(ALP)*2.DO*PI/DFLOAT(NP))
F(I)=A*F(1)+CMPI*F(NP-I+2)/A
F(1)=F(1)*CF/DSQRT(DFLOAT(I-1))

25  CONTINUE

RETURN
END

c

c

c .

c . N N
SUBROUTINE FORK(LX,CX,SIGNI) .

C WWW*WW

C A PAST FFT GIVEN BY J.F. CLAERBOUT, "FUNDAMENTALS OF GEOPHYSICAL *
C DATA PROCESSING" . ) § *
Cmimm%%m**ﬂ%’mmmmﬂm
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMPLEX*16 CX(LX),CARG,CW,CTEMP,CI,DUM!,CMPI
INTEGER SIGNI
J=1
CMPI=DCMPLX(0.DO, 1.D0),
PI=3.1415926 . B
SC=DSQRT(1.DO/DFLOAT(1X))
DO 30,1=1,IX -
IF(I.GT.J) GOTO 10
CTEMP=CX (J ) *SC
CX(J)=CX(I)*sC
CX(I)=CTEMP .
10 M=1X/2
20 IF(J.LE.M) GOTO 30
J=J-M
M=M/2
IF(M.GE.1) GOTO 20
. J=J+M
I‘=1 2 ‘ -,
ISTEP=2*L
DO 50,M=1,L
CARG=CMPI *PI *DBLE(SIGNI )*DBLE( (M~1))/DBLE(L)
CW=CDEXP(CARG)
DO 50,I=M,LX,ISTEP
CTEMP=CW*CX (I+L)
CX(I+L)=CX(I)-CTEMP
50 CX(I)=CX(I)+CTEMP
1=ISTEP
IF(L.1F.1X) GOTO 40
RETURN
END

& ¥

QOO0
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SUBROUTINE ZETA(NP,M,A,SUM)

C % #HHHHHE % F3 I3 S 43 F 3 I3 I St J I -3 3 S0 -

(@]

oo NoNoNoNe]

10

SUBROUTINE TO ADD THE NECESSARY TERMS TO
EXPRESS INVERTIBLE FUNCTION TO INFINITY.
WILL USE DOUBLE PRECISION.

SUM=SUM OF 1/(NP".5)*1/((J+A)".5) FOR J=1 TO
INFINITY MINUS SOME CONSTANT WHICH IS
INDEPENDENT OF A.

S a s R R R R s a AR R T AEEINS SRR R ALy s

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMPLEX*16 A,SUM,D2
D2=DCMPLX (DFLOAT(M),0.D0) Y
SUM=1.DO/(M+A) .

SUM=2. DO*(DS@?T(DFIDAT(M))—‘l DO/CDSQRT (SUM) )
~0.5*CDSQRT (SUM) *(1. O+SUM*(1 .0/12.0-SUM*SUM/192.0))
DO 10,Jd=1,M .

SUM=SUM+1 - DO/CDSQ&T(J-&»A)

CONTINUE
SUM=SUM/DSQRT (DFIOAT (NP) )
RETURN
END
+ 9
- o 95




PPENDIX B - The Inversion Case Program

The code for the lapse case follows. This code is extremely similar to the lapse
case and the subroutine names and functions, variable names and hints are identical
or at least very similar to those in the lapse case.
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[aNaN [aN gl o [a N Al ol (ol ol

[a N ol

ORIGINAL PACGE Is
OF POOR QUALITY

PROGRAM “AIN

otttnnotttttattt.ttt"Qottotttttlo.tt.itittt.ttt..o.lOtonttotot.t

Main program: will call the subrcutines to:
1) 1Inmput the progras p2rameters.

2) Finc the points in the ¢*3/72 function shere

rezion changes cccur,

slightly adove the real axis.
4) Paerfora the “ankel Transfors on the matrin

obtiined in stec thrae.
5) #Frant the results.

*
»

*

*

»

. 3) 2uilid tre matrix of values obtained by sarching
-

-

*

L]

-

L]

LAAARAASRARSE R A RRE AR AR Ad s R A2 R R R R R R R R E F E R N R X R R X R X A s

IMALICIT CJUSLE FPRECISIONM (8-M,0-2)
CCMMIN /YaTIN/ F

CCMMCN JCONST/  (1.P2

CoMMCN JCINSTY/ SPEEC,CMEGA

COMMCN /CONSTZ2/ BLPHE,OTCT

COMMCAN /CONSTY/ 21,IREF,S

COMMON JRESICNS RSI,RS2,RT1,R12,001,R02
CoMMON /5TAT:/ ACE,RESISTANCE

COCMMIN /INTZC/ N3, MEINGPTS

COMMIN JAFZIIINZ PGHET,CELQETA
CuMPLlexsls F(327¢8),L1,GLESS,RO0T,G32

2 = ZCYPLX(J.cC,1.00)
s 1 = JATANC(S.C0,-1.20)
FRINT «,%231= “,pi

CALL INPUTCOELSETALNGNRT,LRTI,RT2)
AN = =Pl/<.00

PRINT #, " ETERPINING REGICN CMANGE COORDINATES®
Cably REGION_FINDCANG/RT1,RTQ)

PRINT *,°BUILIOING MATARIX®
CALL SUILOMATRIX (CEL3ETA,MGHT)

PRINT o, 35CING MANKEL TRANSFORN®
CALL HANKEL

print «, Prxrting results to FORC4S, OAT‘
CALL PRINTALL(DELBETA,NDPTS) ~

PRINT w,"2a COMPLETT #»*
sTQP
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END N A '*?35"’1“"

SUBRCUTINE INPUT(OELBETA,HGHT,RT1,RT2)

20000000000 ed ettt RSSO RNERaReRad et dantdnnaAdodintond

. *
. THIS IS TWE INPUT SECTION OF THE PROGRARM .
. ALL PARANMETZRS NECSSSARY FOR THE OPERATION *
. CF TrE PECGRAM WILL BE INPUT IN TMIS ROUTINE .
. *
» L

N Y Y R A X XX x2S 2R R0 R 2 22 222 2 0] )

IMPLICIT J0U2LE FRECISICN (A-%,0-1)
CoMMCN JCCN3T/Z Cl.P1

SCvMIN /JLONSTYY/ ZPESC,OMEGE

CCMMCN /7CON3TS/ aLPHALLTCY

LUMMIN JCONSTI/ 2,0REFLS

CovwuIN /S5TATE/ SCE,RESISTANCE
COMMIN ZINTEZ/  NS,ME,NQPTS
CCMPLEXetd (I

anITE (Oleb)
FRINY IN2LT 5-YSICAL PARAMZTZERS: Tetector height,Source height,’
FRINT -,’ Znd Angular Frequency’
L€AY w,ls3,2v20A
PRINT #, INPLT STATE PARAMETERS:Temp gracient,Tesperature profile’
print *,° constant and Teap. at infinity®
REAS ®,SToT,aLPHA,TINF
PRINT *,°IrpLt thre chessell wodel FLCW RESISTANCE®
REad ®,RESISTANCE
FRINT *,°Input tre NUMBER OF DATA PCINTS®
REAC *,NCPTS
TST =CLOGCOFLOAT(NCPTS))/CLOG(2.CO)
IFCSA3SCTST=CNINT(TST)) .GT. 1.0-8) THEN
\‘91S=DNINT(2..v"tNINT(TST))
RINT *,°Invatid snput (aust e 3 power of 2) TRY AGAIN’

P’{NY «,’ (ex. °,NCPTS,°)*
6070 1
END IF
PRINT o+, INPLT rmaNKEL TRANSFCRM PARAMETERS: NS, ME and Integration
3 neaght’ :
READ ®,NS,ME,HGHT
<REF T .00
SPEEC 2 DSCRT(4C1.2C0 » TINF)
/71 z QMEGA/SPEEC :
RTC = RT1205CRT(1.00/7¢1.CC+0T0T))

CEL3ETA: = RTZ » 1,010C INCPTS
WRITE (6,300) o )

FORMAT(C’ :2cx:1r:IIIIIIIIIIIIIIIIIIIIIIIII’ t clesrs the acreen
PRINT ¢,°Reference hght =*,IREP
PRINT 'o'Dotcctor helghts™,l CtT oo TTmeer T
PRINT ¢,°Source reight °,8

PRINT »,Frecuency (rad)s*,0REGA ~— =

PRINT s,"speed of sound s®,SPEED ~ ~ - .- o . -
PRINT ¢, Tamp Gradient =°,070F¥

.&f$

\.,-..

e e o et s i e = 4 ,a....“ i e m ae on

98



Cr € Cr v O

L0 0O O 0 6O ¢t 0.0

'y

Cv

ORIGINAL PAGE IS
OF POOR QUALITY

PRINT »,°Protile (algna)=’,iLPHaA

PRINT 2,°7 infintty 5°,Tin?

FRINT »,°Chessel resist.=*,RESISTANCE
PRINT &, ’Nums. points 2 ,NCPTS
PRINT *,°Je]l dets 2% ,DELRETA
PRINT o, ecccaccaa ~-°

PIINT ¢,° Markel”’ .

FRINT ¢,’z0onstants NS 2°,NS

PRINT o,° ME s’ ,NE

grint ¢,° 4lg =’,HGHT
FRINT *,%1ntegration F3nt=’, NGHTeDEL®3ZTA
FRINT #,°,°

AETUSN

INS

SU3RCUTING CILLPwTRIX(SELISETALALP)

(A S AN AN RN AN R R R A N A R R R A A A A R X R R X R R R 8 2 X2 X 22X

-
- L]
. This suLsrcutine is Jused to deterwmine the function L
. "3" 1n vén Mocrnems‘s notes. It will te called by *
. tne r21n gesgram ana sill return the matrix shich )
. wil. ce lrvartec sy the Fankel program. L
] »
- *

(AR AR E N A A A R R N R R R R R R R R R R Y R R N 2 R R R 22y

-4
wr

IMOLICIT CCJd3LE saZ TIN(A=",C=2)
SINMIN /MAIN/ t3a
CodMmli JIONSTS Cis
Co4MIN JOUONSTYZ ks
CoMMCN JTIN3TC/ ALP
CoMMIN JOINST3Y/ 1,1REFLS
CoMMCN /RESICN/ RS1,RS2,R2Z1,R22,R0Y, 002
COMMON /3TATZE/ RCELRESISTANCE
COMMCN /INTEG/  AS,MELNGPTS
CoMrPLEXmlo 324R(22768),37T4A
COMPLEX®TS 52 _2,82_5,62_C,522_C,C22,62
CoMPLEX*1S ETA_2,5TA_S,ET4_0
CUMPLEX=10 PY _NI,r2_NZ,HT_NS,H2_NS
CodPLEX16 MY N2, M2 _NC, F11_NQ, H21_NO
CoMPLEX*1S CCNST,R,E,CT1,T1,72,73
COMPLEX"18 TAULPSIL2IMP
CCMPLEX®16 3RGI2,5RGIS,SRGZASRGS
INTEGER IREGION

= CDEXP(= PI » CI / 1.00)

"

FR = CMEGA/(2.0CeP])
RATIC 2 FR/RESISTANCE
<0 2 1,C0+9.C80C*RATIC*»(~-,7500)
X = ~11.50C*RATIO»»(~,7300)
LImp = DCrPLX(SD,X)
Q = 1.00
q = 0.C000c26.00¢P1¢4,£7002(10.000%¢SPLREF/20.00))
RLMDA = CMEZGA/(SPEEDwALPMA)
RLMDAZ3 = RLMCA = (2,00/3.00)
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teBadssnvasscasedntednttdone
Co0 1C,131,N2PTS

53Ta 3 DCPMPLX (DFLCAT(I=1),(ALP))*(DELBETA)
CALL SIaLL1(IREF,BETA,52_C,GIZ_0,ETA_O)

CalL GIALLYCZ,3:74,321_1,GZL,ETA_L)

CALL GZALLVICS,BETA,GZ_S,022,ETA_S)

CALL MELLCETA _Cor2_NC,H2Y1_NC,HT_AS,#11_NC, IREGO)
CALL mELu2(ETa_S,n2_NZ,n1_NS,IRZGS)

CALL RALL2CETA_L1,M2_N1,41_NZ,IREG2)

Cawi RESION (E3T8,IREZION)

Tau 2 1,20 - (SPEZI/CMEGE o (172 = IIMP » G22_0/61_.0)
382 cIMEelleSPII0/CVIGA
=51 P31 0w ((3,00/2427 » RLMDA)#(2.00/3,00)) » GZ_C

ITSLAT(SLI L

T e * TZTS 7 (TZ«CIs(RLMCA23)*SRGL*SRGS)
(225(rMe_NO)) w3200 C40C JANC. C(ABS(KF2T1_NO) .EQ. 0.DC)) THEN
TEOCMPLX(1,025,2.C0)

3910 ¢c¢

s

= Tay = mZ_NC ¢ PSI « KF21_NO
3 = -(T3y ¢ =~1_NT ¢ 231 « #11_NO) / R

- ay

de T2V s8s3s003s007,8),IREGICN

RESION 1 o
5334C€I) = CCNST = (F1_NS ¢ #2_NSeR) » W2_NZ
3313 10
e REGICN 2 »
GEARCI) = CCNST » (M1_NI + H2_NI®*R) *¢ H2_NS$
6S13 10

. RESICN I o
55aR(1)  ==(CONST /C(E*E)) » (HI_NS/R ¢ H2_NS) & W2 N1
6eT0 10

«  REGION & =
G33R(3) =-CCNST,» (MT1_NS/R ¢ M2_NS) & H1_N2
3070 10 :

*  REGICN S »
GSAR(L) 3-CCNST * (K1_NZ/R 4 M2_NI) » H1_NS
5010 10

.e REGION ¢ »o»
GBAR(I) = CCNST » (MI_NS ¢ ((R-E)/RI*E & H2_NS) & N2 _NI
6CTJ 10

* REGICN 7 » B o
GAARCI) = CCNST » (K1_NI ¢ ((R=EJ/RI®E & H2_N2) * N2_NS
GoTo 10 '

. REGION & «

&

- ———— - ——— - PR
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é GBAR(I) = CCNST @ & » (R1_NI/R ¢ H2_NI) » M2_NS

C
c .
10 CONTINUVE

RETURN )
END

C

c

C

<

SUBRCULTINE G2328LL(L,82TA,G22C)

c--t'-.--ot-to.ttl'..-n..-n.'n"..t'.tt..t.'....'t.t..'.....'..

C» L ]
Ce 332aLL CALCULATES ¢31/72 FUNCTION -
C» *
e .
o nc31fi1ed <0 tre oranchk 2cint of tre LCG fumction »
C» 1s Selow °"a positive real axis. Fed 20, 86 .
(] noc1f1ed again 10/1c/4% for mocified progrim .

L ]

C-t--'.---'-nn'non.".ga-.'tﬁ-'.t.tt'tt...'tttti'...'tttt-ti'.
IMPLICIT JCU3aLE FAEICISICAN  (a-+,C0-0)
SoMALEX®YS EETA,FHMILSIETTI,SCRT2,F20,6G32C,H00L0G
CoMeELixels 531,4,2,8,C2
COMMCN JTONSTS (IR 2
CoMMIN /CCON3T1/ SPEEC,TMEGA
COYMOIN /CINSTe/ 0L7ma,lTCY

Ad 2 1,20 ¢+ aLPrael ¢ STTY
: 2 1423 = ((S35ZE2ezESTA/CMEGA) » (SPESCBETA/OMEGA))
51 2 SLSRTI(EITaL)
3 T SeflalziTa)
Fal = ST /(5¢C538T(AR))
ISCOTET 334 o0 JCR. CDABS(I,.-PHI) LT, 1.0-8) THEN
302 G.0
zu82 ;
FOO= .5 » COLCGC (1,.4PMIY/(1,-PHI) )
INDIF
3320 = = DSCRT(2A) ¢« S1 4 CYOT » FQO/S
<ETURN
iND
<
C
C
C BEolN CF FUNCTIONS LSEC ABCVE.
C
C S AN R I AL AR AN PSR R AR RN R R D AN A D AR R RN AN R ANNS NS A DO AR ORI RO RSN RN NERD
C SRTT AND SQRTVTZ ARE FUKCTICNS TC CALCULATE SORT(BETA) GIVEM *
C CESIRID SRANCH CUTS ANC CIRECTION #IMAGINARY CR ~IMAGINARY, .
[4 R R 2 s s R X SRS R AR R RS SRR RN R R A AR AR AR A AR AR 2
FUNCTICN SQRTI1(8ETA, D)
WMPLICIT COUBLE PRECISICN  (A-H,0-7) "
CCAPLEX®1E 3ETALAA,SARTILCT
CCMMON /CCN3T/Z CLsP1
CCMMON /CUNST1/7SPEED,CMEGE
CCMMON /CCNST2/ALFRnA,CTICT
Ad 2 1.-(C((SPEEC/CMEGA)*BETA)*((SPEED/OMEGA)*BETA))
od s 1, ¢ ALPHAs] ¢+ CTOT . ’
JWRT1aCDSCRY (AA«2B-DTCT)
nE TURMN
END . e - . $.~-.7-- . -~
c

o sate e
A
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C
C
(4
FUNCTION SQRT2(BETA)
IMPLICIYT DQUALE PRECISION (A=N,0-2) oo
CCMPLEX®16& SETA,AM,SQRT2,CE
COMMCN /CONSTZ (Cl.P1
CCMMCN /CON3STYZ SPEEC,OMEGA T
CoMMCN /CONSTZ/ BALPHALCTCT
Al T 1.~(C(SPEEC/CMEGA)*BETA)((SPEED/OPEGA)*BETA))
SeRT2 3 CISSRTI(AR)
nE TURN
iND
¢ .
(4
C
<

SUBRCVTINE SatL(I,28TA,5)
c. . "fttacERscRIRERRRETYSICETRRIRNSORLERTYORRORNOEREORRRNLSORARARSRS
C SALL EVALLATES T=E ¢ FLNCTIZN *
A AR R RS AR AR A R A R R R Y Y R R R SRR )
dMPLICIT SCusLE FRECISICN (A~=k,0-1)
CCMPLIX *15 :,3ETA,G62(,82,C1,91
COMMCN /CCNST/Z  CI,P1
CGMMCN /CCN3T1/ SPEEC,OMEGS
coMMCIN JCINST2/ BLFHALCTCTY - "
cAlL. GXlALL(I,3272,322)
FMl 3 CATANC(CIMPAG(GI2),CREML(GY2))
it (chi .5t. J.4C) phizphi=2ep{
((czacs(332))90(2.680/3.d0)) » cdenp((phie2.d0/3.dC)ecy)

L

[N 4]

. "P1/2.30) THEN
v CCEXP(c.CC/3.00eP1eCI)

«LZ
5

e
-
(2 1]

" -
el
©

VU W T o
e

o = 6 » COEXP(4L,CC/2.00¢PICI)
InC IF
RETURM
END Tt -

[aN a N aNa N £
'
i

SUBRCUTINE GZALLT(CI,8ETA,GL,GII,ENY e
C TRt a N R e R A PN RS R R AR AR AS R ARASR AR RAOaOARRRASOSSRRS
C  GoALLY CALCULATES aLL THE PARTIAL DEQIVIYIVES *
C CF THE g FUNCTION, - *
[ Y N R R R R R R e IInnIIInmmmMmMmMm I YYTT
IMPLICIT COUBLE FRECISION(A=-M,0-1)
COMPLEX *16 32TA,52,622,6,6G8,G88,5QRTT1,EN,CTLO0UM
COMMCN /CON3T/ (1,P1
COMMCN /CONSTI1/SFEED,CMEGA
CCMMGCN /CONST2/ALPHA,CTOT ) T ' -
CALL GALL(Z,3ETALG)
SI s 1,00
A T3 {,eALPHARTIOTOT - ToTT e EmemE e e T
ol 3 2,00 » SI» ALPHA * SQRTI(CRETA,Z) /7 €3.9COSQRT(G2A))
¢ 8 2,2ALFHAs3 DCeDTOT/(904002,00)
GIL = C/(GleG)~.5¢G1+22,00/¢ Tt otTTe s e
T ] (3.'OIEGAI(ZoﬁlLPHl'SlGED)l"(Z.lﬁl’.OO)

B T VS,
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N = Teg
RETURN
END

SUIRSUTINE HALL(Z,H2,F21,HT1,H11,IREG)

(e s P AN A AN NN R L E TR N AN RN R R RN RN SN RO A ORI R RANRNAN R ANONCOGOEREOOIRNTE

C
C

naLl U323 SU3SRTUTINE (334IR TC CALCULATE 1/3 CROER .
FenAiL  FUNCTIONS FRIM AI&Y FUNCTIONS. hd

M L R N S R Y R R R R R XXX

(g aNal ol

o aNa N uNaN AN o N N o NN aRa W ol g o I oI o)

JMPULICIY ZOU3LE PRECISION (A-w,0-2)
COMPLEIX®1S 2,07,82,87P,81F,K,KS,HY1, W2, H11,M21
LoMPLEX®Ts RG0!

COMMON /2CHSTY CLLPE

ARG 2 ICNMPLX(L.cur=P2/6.00)

< S (10.20)ee{1,007¢.5C)CIEXP(BRG)
AS 2 Z20NJGKLK)

embl CG2aIR(~21,37,21,3IP,81IP,IREQ)

Al = Ke(3 =Cl2])

Ag = RSe{alelw:D)

ni1 = =Xa(al2=Cl+37P)

nd1 3 =XKSe(AIP*CIeslF)

RETURS

iNS

SUDRCLTINE C560IR(1,41,81,A1P,81P,1IREC)
LA AR R AR E A NEEAERRER AR AR RE R RS R SRR R SNSRI SRR 2 2§ J
CmuvJLATE AIRY EUNCTICAS FCR CCMPLEX®1& ARGUMENT
nife =ANSELCR OF MATHEMATICAL FUNCTICKNS, 23Q°AMOMITZ AND STEGUN,
ENTARY:
CatllCiiLaT2 AI5UMENT(I) ANC ASSCLUTE VALUE(?)
WF 127 LT o
TrEN U3E €<S. 1C.4ec ThRU 1C.4.5 FOR AI,BI,A1P,0IP
Tu Euvde IF ARG(L) LY PI/3
TN CALCLLATE 2€TA(2)
L3€ EaSe 10 4.5, 10,4061, 10.4.63, 10.4.66 FOR AL,081,A1P,B81P
¢d eLde CaLCULATE lETA(-1)
USE Zad. 10.6.60, 1Cowab2s 10,464,684, 10.46.67 FOR AL,82,A1P,8]1P»

LR R 2R N BN BN BN J

[ 2 2

ENDIF .
cNIJIF .
exiT 7 L]
enD -

ERARRRANAROR P RO R RO R R AR R P A AR RNREAND R R AR B RN R RNNSRORNORAROOARRERES
JMPLICIT COUBLE PRECISION (A=M,0-1)
CCMMON /CCINSTZ CI1.P
CCMPLEX*16 1,A1,81,82P,EIP,LETA,CIETA,L146,SUNT,SUN2,SUN3,SUMG,
1 J2TAP,S4CT1,FACTZ/SN/C3 FTERM, FPTERM, GTERP,GPYERN,FL.FP,G,GP,13
COMFL:X*16 VIETA,LVIETAP,CI
JIMENSION C(21),0¢21)
CATA C1,C2,PIRT,P147.355028053900,.2588194038C0,1.77245385100,
+ 735358163500/ *
PIRT=CSQRTI(PI)
CATA C/1.30,.0696444444444440C,
* WC371234876562¢10C,.02799208591278C000,
1 C57064919C4126690C,.116099C64C255100,

TS
B s
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000C
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LA BV Y BV N

ORIGH AL » ikl 18

=
,2915513992307400, .87766696950998c0,  OF POOR QUALITY
3.G79453030173100,42.341573332345¢0,
$5.62278536591400,273.465C8077759C0,
1533.169432012700,9207.2065997258C0,
$5892.51356587500,419524.87511653€0, -
3148257.4178666C0,25158915 87160100,
2142368026.963€600,1929375549.1823C0,
18335766977.84900/
JATA C/1.00,
~.097222222222221C0,-.04388503C86619700,-.0624662830789894C0,
. 02662163492031CC, - 126105866027270C,~.7082537649010700,
- 920479752612910C,=3.2104915246428500,-12.80729308073500,
-57.5C32075136110C,~287.0332371092000,-1576.,357303337000,
~54e0.3542300530C, ~51135.70466194700,-428952.4004000400,
c1214516.5210CC0C, 28657508, 1235C900,-218293420.8321400,
-19635237:4.95C90C, 16263631088, 1CS00/
4651 = ALY
1FCa352.20.0) GO 1Q
;F(ABS(::*AG(Z)).Lé.i.t-12.!N:.3nEAL(I).L7.0.C0) 60 70 S
AReZ = CATANZCOINBG(2),CREALCI))
eC TS &
ARGZ % Co.C.0
ol TO &
ARGLZ = ©°1
CoNTINLE
1F(A3s8l.57.6.20) C¢ Tc 10
ire;=1
ASCENCING SERIES
E;So 1:0'-211C¢‘-!
CONTIMNUE
i3 z el
FTEaM s 1,00
FPTzRM= 227/2.00
oTcRM = L
SPFTZars 1.30° - - : o Tttt ¢t
obiM = 1,2-13ea882

F 3z FTERNM
#? 2 FPTERM — - R et —--
v s GTERNM
P z SPTERM

RKRT 3 1C0 ~ ¥ "ACJUST RRKT TQ INSURE CONVERGEWCE IP NECESSARY
€0 1 Is1,KKKT

I3 s 3ol

FTERM = FTZRM*I3/7((13=-7T.D0CYe13) TTEe e o T
FPTERM=FPTERM* I3/ (13e(12+2.20))

aTcam = GTzRMe23/7(13(12¢1.08))
GPTERM=GPTERMAZI/ZCCTIS=2.0C) eIty ~ - —-"= === = = o= oo

F s FeFTERNM

Fp x FPFPTERM

G x 3GTERNM T e
oP s GP+GPTERM

IFCCOABS(GTERM) .LE.GLIN) GO TO 2

CONTINUE T T s

PRINT 60C0-, 1

FORMATC/® 12°2616.5,° ERROR IN CGRAIR, MONCONVERGENCE®)

Al T s CIeF=C2e( o TTres TTET T e oo Tt
AlP s ClafpP-Clei? .

2 s 1.732C508C2000(CI9FC225)

N 244 s 1,732C508CAD0(CTeFPHC2eEPy~ — — —7 — 77 "7 7 T

G0 10 §999 gl
DT L L
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ASYMPTCTIC SXPANSIONS FCR /I/ LARCE F POOR QUALITY

SIGN L] 1.30

SUN1 s 0,00

SUM2 s 3,00

3LM3 = $.00

SUMe = 0.DO

AF(A35(ARGL) .GE. PI/3.0D0) 50 TO 20
Aregsze

JARG(I)/ LE PLZ3

Eede 10059, 10.4.681, 10,4.62, 1C.4.66

NERY ] = JlZTALAB82,4RGL)
«C 11 I=1,1¢

[ EE

CITAP = iTasex

s 1 = OIOMISSIGNeC(T)/2ETAP

M2 = SUMEHSIONRC(I)/LETAP

Y B = SuMI*C(I)/sIETAR

SutMe T SUMeC(I)/ETAR

FPeTE = =Siok

cantirue

el T L3531 we, 350 o 3CF°L!(COS(lRGllb.OO):SXN(ARGII‘.BO))
FALTY = (3309 COZxP(=12T8)/(PIRT*214)
FACTe = « 530 CTEXP(=ZETAI*T14/PIRTY

Al = FACTi=Syumi

wi? 2 =FACT2eSLM2

FalTl = (2IXPC(IZTAY/Z(PIRY*214)

FacTd = COEXFUZ:ZTA)~l14/F1RY

32 = FACTYeSyup?

oi? : FACTZeSuUMG

ov TG0 3395

JAR5C1)/ 5T 21/3 NOTE CHANGE ABCVE
€ede 10.4.8C, 1C.4.62, 1C.6.664, 1C.4.67

CONTINUE
iregsy

AR3I = JATANZ(-QIMAGCL),=2REALCZ)) -
1zTA = CLZTACARST,ARGY)

VIETA = 1,2C/1:7Ta

Lt = 10

00 21 I=1.,LLL

.4  (I-1)e2

J = K2+t T -

VICTAP = VIETAwex?

SUMl = SUNTeSICN®C(J)PVZETAP

Sume = SUMC*(SIGN*CCS+1)eVIETAPaVIETA)

Sum3} ® SUMIS(SIGN*C(J)rVZIETAP)

SUMe = SUNGO(SIGNﬁC(J01)'V2ETAF'VIETA)

SIGN z =5IGN o
Continue ’
is * ABSIe*,Z500%0CMPLXCCOSCARGE/4.D0C),SINCARGZ/4.00))
FACTY 2 1.9C/7(PIRT=2L14)

FACT T 214/P1IR0

SN 2 SINCIETA*PI/6.00)
cs = COS(ZETa+P1/4.00) e -
Al = FACTI®(SNOSUMTI=CSeSLM2)
AlP 2 “FACT2(CSoSUM3SSN2SUNG)
al = FACTI@(CSaSUMTHSNOSUNR) ™~

8lpP 3 FACT2o(SNaSUMI=CS*SUNE)

- e
. LI S
- e e sl caeme dem s aB - mees
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raﬂﬂ‘ =
2,

CORIGIHAL PAGe

c9999 continue B OF POGCR QUALITY
RETURN ’
END

p .- .

C . -

C BEGIN OF FUNCTIONS USEC ABOVE

¢ . 2EL A - )

¢

FUNCTICN ClETA(ASSI,ARGY)

IMPLICIY COUSLE PRECISICN (A=-M,0-2)
CCMPLEX®16 C22TA

ARG : ARGZe1,50C

CIETA = (ABSZe*1.500)CCMPLX(CCS(ARG), SINCARG))»,66686866£6086€700

KZTURN

END
C
C
C ENMC OF FONCTICONS LSED ABCVE.,
¢ \
C
<
C
C

JUBRJUTINE “ALL2(2,MS,P1,IREG)
C #raeansar et et atereseesttt it nede ittt sttt ttdtttesnddnanesnty
C maLLé uded SUERTUTING CGS8IR TC CALCULATE 1/3 ORDER .
C PANKEL  FUNCTITNS FRCM AIRY FUNCTICNS., NCT THE *
. CERIVATIVES a5 paLL C[lES. .
I R AR R R N R R R I R R S A R R R RS S R SR R R R R AR SRS Z R

SMPLICIT CCUSLE PRECISICN (a=-p,C=2)
CoMMIN /CONSTZ CL1l.PI

ComPLixnls 1,82,51,81F,3IP,K,KS,HT, H2,H1T1,H21
cOMPLEXe1¢ ARG,CI

CoMpPLEX®TS 3:Ta

ARy = 20PPLX(2.JC.,-Pl/6.20)

3 3 (12.,00)ee(1.00/¢.0C)2CCEXP(ARG)
a3 = CICNJS(K)

CALl CuSAIR(=-2,A1,31,A1P,RIP,IREG)

nl s Ke(AI=-CIed])

n2 = KS#(AI*CIeE])

RETUKN

ENG

(aNaNalal

SUBROUTINE mANKEL
C 2000000000ttt st et tasatttRd it stdetinettseRtadsdodntntotesaRansteenteon
C SULBROUTINE TO ACCLRA?:LY CC THE AANKEL TRANSFCRM CF THE SOUND b
C PRESSURE LEVEL. *
C FUNP)SG3AR(NP) MLST EE SAMPLED AT NP POINTS WITH K=(N=1,ALP) .
< ALP REPRESENTS TrE DISTANCE ABOVE TWE REAL AXIS THE FUNCTION WILL ¢
(4 8€ INTEGRATED. ]
C NS IS A PllA!ETEl I:FRESENYING ADDIYION ok ll ANILVYICIL FUNCTION o
C 10 F(NP)~ TTTETmTTT T T T *
C M IS THME NUMBER CF TERMS USED TO APPROXINATE F(NP) TO INFINITY .
C .

ARRAEBANAPRRRERN RS ERNRORENIRPRNENNARN PP EIORSERANANEIRRRNRRONARDORARREER

INPLICIT DOUBLE PRECISION CRA=H,0-1)~ T
COMMON JCONSTZ CPPI,PI R SR :

106

enr



ORiG1: :
CCMACN /¥3IN/ € OF’_?'G”'\AL PAGE |s
JCMMEN JINTEG/NS,ME, N1 " POOR QUALITY -
COMMCN/AFB2IN/ALE ,0ELBETA Y
CoMPLEXe1 F(327¢68),CF,CARG,SUN,ENP,CHPL,01
AL? 3 ~ALP ! necessary to satch attenborough’s definition of »slp
NP = N1
JELK = JEL3ETA
€ SLeTRACT ThmE ANALYTIC2L FUNCTICN IF NS > IERO
[« ALJUSTING THE SUETRACTICN MULTIPLIER CF
AF(NS.LELD) SCTO 11
L= 2 SCMPLX(Q.3G,0.C0)
IF (8LP.25.0.C) TmEN
CF 2 JFLCAT(N®)/CZFRELCATINS)
CF = CFwric)
ind IF
IF (ALPuNZLJ0l) TriN
CF 3 CVPIelFLCAT(NF)=E(1Y/(ZFLCAT(NS)2aALP)
end IF
< LeTRaCT T=2 JNALYTICAL BULNCTYION IF ASO>D
cS 12,221 0NF
P | 3 ISMPLX(IRLCAT(I=1),(=ALP))
wFLCAT(N3Y S (~21)Z7CFLOAT(NE)
202 = FLI)=Caet1,0l=-C2EZXP(CARG))

CONTINGE
SFLALPL2L.3.0) S(1)=CCMPLXCD,00.C.00
NP = F({NP)
«eS 12,222,N°
1l 3 SCUELY(SALIATLI=-1),(=-aL"P))
02 S(IX/CTASIRTLLYY)
1¢ ceNTINCE
SFCALPLNTL2W0Y 2(1)=F(1)/7COSERT((-CMPZIe(ALP))
C A00 ToiM3 TO IMNSINITY 12 w30
JFCMELLTLY) 1T 20
28 15,131,NP
oV = ZIWPLX(ORLCAT(I-1),(=ALP))
CF 2 J1/CELOAT(IND)
CALL JETAINP,MZ,CF,SUM)
FL3)=2 F(I)*FNPeSM
15 CeNTINUE
v CONTINUE
C 3oC Tne FFPT
CaALL FCRKINP,F,1)
C Al0 ALTERNATE TERMS TO GIVE NP/2 SAMPLES TRANSFORMED
[VE = JSLK«LFLCAT(NPI2(CLSIRT(-CMPI)I/(2,.002P3)
S <5,132,NP12 '
A = CEXP(TFLOAT(I=1)e(aLP)»2,C0*PI/DFLOATINP))
FCI)= AoF(I)YCMFIeF(NP=-342)/4
FCI)= FCI)*CF/OSWATIIFLCAT(I=1))
r4) CONTINUE
RETURN
END

[aN aNdN al

SUBRCLTINE FCRK(LX,CX,SIGND)

LA A EREAR R A A R R R R RN R AN R R A Y Y N R X X 2 X S X X2 2222222222222
A FAST FFT GIVEN 2Y J.F, CLAEREBOUT, “FUNDAMENTALS OF GEOPNYSICAL ¢
CATA PROCESSING” .

(N e N ol
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C.ttt. AN RRR RN ARNNED N2 ARRSO RN SRRRCRRRRNRORORRORRldeRaddRRtRoddtRtRnoe
INPLICIT DOUBLE FRECISION (A-H,0-2)
COMMON /CONSTZ CPPI,PI
COMPLEX®16 CXCLX),CARG,CM,CTENP,CTI,0UNY,CNPY
INTEGER SIGNI ~ ai
J s 1 .
. 4SC = DSQRT(1.00/CFLOATCLX))
00 3C,I=1,LX T
1F(1.6T.J) GOTO 10
CTEMP = CX(J)#SC
CX(J) = CX(I)eSC
CX(1) = CTEMP

16 Mzt X/2
P I(J.LZM) 5CT0 3C T
J z J=N .
“ : M/2
IF(M,5E.1) SCTQ 20
V) J s JeM
L = 1
“y 13TEF=CeL

C3d 3C,v=1,1L
CARGCMPIeP oSl S(SIGNLI)=CALECC(P=1))/70BLE(L)
CazCLEXP(CARG)
S0 SCrizMsLX,18TEP
CTEMo=z CwoCX(L*L)
TXCz4L)=CX(Z)=CTEME

FY) IACI)=SCx(I)elTEMP
L=l3Te?
I5CL.LT LX) GCTO oC
"eTuRM
inC

[aNa W a i ot

SJISRELUTINE ISTA(MNP,M,A,SLNM)
LRSS RBARE NN LT RRCRRER Rt R RNRROARROOReRtRARARDRRRRARYS
[« SUSRCLTINE TC aQ0C THE NECESSARY TERMS TO
C IAPRESS INVEKTI2LE FUNCTION TO INFINITY,
. witlL USE 0OLBLE FRZCISICN.
c SUMIIUM OF 17(NPAS)e17((J*a)*,5) FOR Js1 TC
¢ INFINITY MINUS SOME CONSTANT WhICH IS
C INDEFENCENT OF B,
C-t-t-ttont.l.'a-t'tt--'aot.tnﬁ.tbtt.t't.t"t..tt?tttt.t.
IMPLICIT DOURBLE FRECISION (A-H,0-1) f'
CoMFLEX*16 a,5UM/C2
hPs = JCMPLX(DFLCAT(M),C.CO)
Sum = 1,.007(me+a)
SUM = 2.00%(DSQRTC(OFLOAT(M))=1.CO/COSQRTISUM))
§ “CoSoCOSIRT(SUMI (T C¥SLMe(1.0/12.0-SUM*SUMN/192.0))
<0 1C,dsi,m
SUM = SUM*1.DO/CCSQRT(J*A)
10 CONTINUE )
SUM 3 SLM/DSQRT(CFLCAT(NP))
RETURN
END

- ——— ———— e e s & ——— —— e

[aNaNalal

.t

s e Amers me e e S e wm --
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(AN AN o aNaNaN oW el

Crer €y

C 0o N0 o coet

KU
ruu

ORIGINAL ¥

: T
OF PO{:"; é‘“} PP
JUBRCLTINE PRINTALL(CELISTA,LN) K 'y
LR A S AR AN AR R R AN R R R R R R R S S S R 2 2 3R R A R Y
* *
. SCAROUTINE TO PRINT THE RESULTS OF TwE *
. rANKEL TRANSFORM TO THE FILE FORC44.CATY *
. [

AR AAN AR R AR R A ANE RS R A R RN R A R NN R R N R R R AR A )

INPLICIT ZQUELE FRECISION (a=M,0-2)

CoMMOIN /IINSTZ Cl,28

COMMCN /v¥AINY F

coMPLZIxely ©(32743),C1L

<0 1S, I=1,N72

Aac 3 2.20wele CPLIATC(I=T) / € CFLOAT(N)SDELDETA )

IF (Ral2 43T. J.0) THEN

SEl1303 0 2 23,70 ¢ ILCCIC(CCABRS(EC(IOY)

1aZi = JLoC12(Ra2)

Al (2,9l l) RBL,RA02,2%C1I0LE
SNl IF
CoNTINVE
FORMAT (34,3%15,.7)
2T N
zvo
SLEIICTING F3320N_8INS (ANS,RT1,RT2)
A AR AR R AR RSS2 A i AR A A R R R A A R A R R R R S N R R R R RS R A R R R A2
» ]
. Tals susrcutire Cetermines whore region changes L
. 20 tme 3272 function take plzce. The routine eill »
» 2 ::llac by the main pregrar and eill return *
- tro varictles RS1,RS2,RZV,R22,R01 ane RO2 which *
. sre tre values of beta where region changes accur *
- *
LR AARARE R R SRR AR A AR AR AR N AR R AR R N Y R R R R R I

IMPLICIYT J2CL2LE FRECISION (A=-4,0-1)
COMMIN /OONSTZ CLl,PI

COMMON /CONITY/ SPI:E0,CMEGA

CoMMCN /ION3ST2/ 2L>HALDTCT

CuMMON VCINSTIY L,IREF.S

CUMMCN /RZGICN/ &ST1,RS2,821,R22,RQ1,R02
COMMCN /AS32IN/ PSHTLCELESTA

COMMCTh /JINTZ3/ A3, MELNDPTS
COMPLZX"1S6 3,C1

SIMEINSION SS5(3),82C2),R0Q(3)

grant =, first rcot is’,RT1

print *,’saccnd root  ‘,RT2

mWLIM = RT2 » 1,100
3LINM = REALCINT(.9S5CO*RTI/TELBETA)) « OELBEYA
" = H3HTDELRETA
I z h -
J = ¢
X z
8 2 DCMPLX(BLIM,H) o
CALL GI2REGICN(S,B,1,ANG,PST)
- .- L R S
:t
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CRIGINEL PAGE 13
OF POOR QUALITY

CALL GJeREGICNC(L,3,J,ANG,P2Y)

CALL GY2REGICN(O,B,K,ANG,POY)

R3(I) = REALC)

R1C(J) = REAL(B)

RC(K) = REAL(3)

3 * 8 ¢ JELAETA

if ((CRZAL(3) L LE. MLIY) ANC. (I0Jex LY, 9)) GOTO 10
grint *,1,J,.K

IF (IeJek (LT, J)PRINT o,°

K31=223(1)

"82=85(2)

RL1382¢1)

REGION BOUNDARY NOT DEVECTED.,’

2 JINTO(MIN(RSZ,RICHRCE)=ROT1I/DELBETA)

i1t (rt .3t 7)) tran

PRINT ¢,%ast. Miramium nurder cf coints in region 2 is°.NT
eng a1t

prant «,°R31,3%c “,RS1,Rk52

srint «,°321,R2¢ CARIVLERZ2

grint *», "RLVL,R02  *LRQ1,R22

RETUAN

N2

SUIRILTING SIZRECION(L,3/L,ANG,PY)

LA A A AL R RN R AN AR AR A A A A AR R A A A Al R X A R R Y R Y Y R R X s s YT
* SUBRILYTINE TC D2TIRMINE 532 FUNCTICN AND WPERE REGICN CNANGES OCCUR +»
LA AR AR R R S R R R A e A R Y R R i T I Y
CISISN(aA--,2-0)

l

SMFLICIT SoUILE Fas
CSMMIN /CON3T7 L10?
LoMPLexels 3,032,010
CallL 5332aLL(1,8,8%2)
Fé 2 JATAN2(SIMAG(GR2),225AL(C22))

ré
ifF (PC 4uT. (L.3J7) Pesp2=2eP]
iF (L JEC. O) THEN
[
sCT0
IND IF
IF ((F1 LY. ANG <ANC. P2 .GE. ANG) .OR,
(P1 ,5E. AN <ANC, P2 .LT. ANG)) L=t #9
F1 = 22
RETURM ,
IND

SUIRCUTINE PESION (BETALIREGICN)

CRPEN LD AR SRR CRERAORR NP RN RANCRARRRRNORNARRREANRRNN D200 000R000RRS
* This suoroutine will cetermire which region 1is .
. currently being addressed¢ By the preogras *
(22 R AR AR AR R R AR RN I A RN R R R R R R R R R YRR X R R R R 222NN
IMPLICIT OQUBLE PRECISION(A~N,0~2)

COMMON /CONSTI/ 1,IREF,S 7 Tt T o T
COMMCN /REGICN/ RST1,RSZARITLRIZ2,001,002

COMMON /AFBRIN/ FGHT,CELBETA

COMPLEX®16 BETK T otT T

8 s DREAL(BETA)-DELBETA/S.00 , . . ..
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IF (2 +GT. $) THEN

IF ((a
IF ((3
if ((3

ELSE

IF ((8
ifF ((B
iF (8

2T,
6T,
6T,

N
«6T.
«6T.

ENC IF

RETURN
END

R01)
RS1)
RV

RG1)
R21)
RSY)

«ANC.
«ANC.,
+AND.

.‘N:.
«4NC.
«ANT,

(e
(e
(e

1§

(8

111

.LE.
.LE.
.LE.

.LEI
«LE,
.LE.

RC2M)
RS2))
R22))

RC2MN
R22))
RS2))

IREGION
IREGION
IREGION
IREGION

IREGION
IREGION
IREGION
IREGION

S WO -
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